

LYSAGHT[®] BONDEK[®] II

Structural steel decking system Design and Construction Manual to Eurocodes

- Excellent spanning capacities for greater strength and less deflection
- Acts as permanent formwork with minimal propping and no stripping of formwork
- Fast and easy to install (600mm wide)
- Works as composite slab saving on concrete and reinforcement costs

Preface

BlueScope Lysaght presents this new publication on LYSAGHT[®] BONDEK[®] II. We upgraded this document and design and construction information for the latest Eurocodes and related Singapore Standards.

- SS EN 1990:2008
- SS EN 1991-1-1:2008
- SS EN 1991-1-2:2008
- SS EN 1991-1-6:2009
- SS EN 1992-1-1:2008
- SS EN 1992-1-2:2008
- SS EN 1993-1-3:2010
- SS EN 1994-1-1:2009
- SS EN 1994-1-2:2009
- SS 560:2010
- SS 561:2010

Our newest release of supporting software and the Design and Construction Manual for BONDEK[®] II structural steel decking incorporates BlueScope Lysaght's latest research and development work. Improved design and testing methods have again pushed BONDEK[®] II structural steel decking to the forefront. New formwork tables are optimised for steel frame construction but are also suitable for concrete frame construction and masonry walls.

Contact your local BlueScope Lysaght Technical Sales Representative to obtain additional copies the Design and Construction manual and User's Guide for BONDEK[®] II Design Software. The software can be downloaded by visiting: www.lysaght.com.sg

The following is an overview of this manual. It is structured to convey the subject in a comprehensive manner. This manual consists of eight sections. Section 1 presents the general introduction of the BONDEK[®] II and is followed by purpose and scope in Section 2. Formwork design in Section 3 discusses the concept of designing BONDEK[®] II as a formwork. Section 4 presents the concept of designing BONDEK[®] II as a composite floor slab while Section 5 discusses design of composite slab in fire. Design tables for steel framed construction are presented in Section 7. Relevant list of references are presented in Section 8. Finally, material specifications are documented in Appendix A.

We recommend using this manual's tables for typical design cases. If the appropriate table is not in this manual, try the LYSAGHT® BONDEK® II design software, and LYSAGHT® BONDEK® II Design Software User's Guide, which are available separately our website (noted above) or contact your local technical sales representative.

Conditions of use

This publication contains technical information on the following base metal thicknesses (BMT) of LYSAGHT® BONDEK® II:

- LYSAGHT® BONDEK® II 0.75mm thickness
- LYSAGHT® BONDEK® II 1.0mm thickness
- LYSAGHT® BONDEK® II 1.2mm thickness

Warning

Design capacities presented in this Manual and LYSAGHT[®] software are based on test results. They shall not be applicable to any similar products that may be substituted for LYSAGHT[®] BONDEK[®] II. The researched and tested design capacities only apply for the yield stress and ductility of steel strip manufactured by BlueScope Lysaght to the LYSAGHT[®] BONDEK[®] II profile specifications.

For public safety only LYSAGHT[®] BONDEK[®] II can be certified to comply with Eurocodes with Singapore National Annexes in accordance with the product application, technical and specification provisions documented in this Design and Construction Manual.

Technical support

Contact your local BlueScope Lysaght Technical Sales Representative to provide additional information.

The Star, Singapore

Contents

1.	Introducing LYSAGHT® BONDEK® II
2 .	Purpose and scope of this publication6
3.	Formwork design
	3.1 Introduction
	3.2 Recommended deflection limits
	3.3 Loads for design
	3.4 Use of formwork tables
	3.5 LYSAGHT® BONDEK® II maximum span tables 10
4.	Composite slab design
	4.1 Introduction
	4.2 Design loads
	4.2.1 Strength load combinations
	4.2.2 Serviceability load combinations
	4.2.3 Superimposed dead load
	4.3 Design for strength
	4.3.1 Negative bending regions
	4.3.2 Positive bending regions
	4.4 Design for durability and serviceability
	4.4.1 Exposure classification and cover
	4.4.2 Deflections
	4.4.3 Crack control
	4.5 Detailing of conventional reinforcement
	4.6 Use of tables given in Section 6
5.	
	5.1 Introduction
	5.2 Fire resistance periods
	5.3 Design for insulation and integrity $\ldots \ldots \ldots 17$
	5.4 Design for structural adequacy 17
	5.4.1 Design loads
	5.4.2 Design for strength
	5.5 Reinforcement for fire design
6.	Design tables - steel-framed construction
	6.1 Use of design tables
	6.2 Interpretation of table solutions
	6.3 Single span tables (1kPa)
	6.4 Interior span tables (1kPa)
	6.5 End span tables (1kPa)
	6.6 Single span tables (3kPa)
	6.7 Interior span tables (3kPa)
	6.8 End span tables (3kPa) 48
7.	Construction and detailing54
	7.1 Safety
	7.2 Care and storage before installation

7.3	Installation of BONDEK® II sheeting on-site	54
	7.3.1 Propping	
	7.3.2 Laying	
	7.3.3 Interlocking of sheets	
	7.3.4 Securing the sheeting platform.	
	7.3.5 Installing BONDEK® II on steel frames	
	7.3.6 Installing BONDEK® II on brick supports	57
	7.3.7 Installing BONDEK® II on concrete frames	58
	7.3.8 Provision of construction and movement joints	
	7.3.9 Fastening side-lap joints	58
	7.3.10 Cutting and fitting EDGEFORM	
	7.3.11 Cutting of sheeting	
	7.3.12 Items embedded in slabs	60
	7.3.13 Holes in sheeting.	61
	7.3.14 Sealing	61
	7.3.15 Inspection	62
7.4	Positioning and support of reinforcement	62
	7.4.1 Transverse reinforcement	63
	7.4.2 Longitudinal reinforcement	63
	7.4.3 Trimmers	63
7.5	Concrete	
	7.5.1 Specification	63
	7.5.2 Concrete additives	
	7.5.3 Preparation of sheeting	
	7.5.4 Construction joints.	
	7.5.5 Placement of concrete	
	7.5.6 Curing	
	7.5.7 Prop removal	
7.6	Finishing	
	7.6.1 Soffit and EDGEFORM finishes	
	7.6.2 Painting	
	7.6.3 Plastering	
	7.6.4 Addition of fire protective coating	
7.7	Suspended ceilings & services	
	7.7.1 Plasterboard.	
	7.7.2 Suspended ceiling	
	7.7.3 Suspended services	
7.8	Fire stopping detailing	
7.0	7.8.1 At reinforced block walls	
	7.8.2 Fire collars	
7.9	BONDEK® II in post tensioned concrete-framed construction	
7.0	7.9.1 BONDEK® II rib removal at PT anchor points or	
	5	68
	7.9.2 Positioning of PT duct/cables in transverse direction	
7.10	Architectural matters	
7.11	Accessories	69
Refer	ences	70

8.

1. INTRODUCING LYSAGHT® BONDEK® II

LYSAGHT[®] BONDEK[®] II is a highly efficient, versatile and robust formwork, reinforcement and ceiling system for concrete slabs. It is a profile steel sheeting widely accepted by the building and construction industry to offer efficiency and speed of construction.

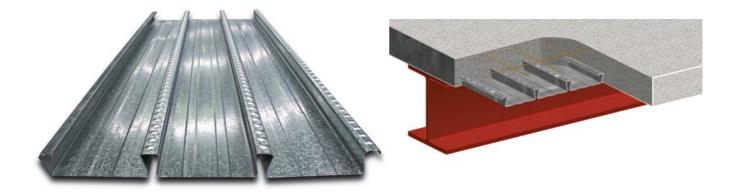
New design rules have been developed for the design of LYSAGHT[®] BONDEK[®] II acting as structural formwork for the construction of composite and non-composite slabs (where BONDEK[®] II is used as lost formwork). The rules are based on testing performed at BlueScope Lysaght Research and Technology facility at Minchinbury, Australia combined with the relevant provisions of Eurocodes.

The typical BONDEK[®] II profile and dimension of a cross section of composite slab is given in Figure 1.1 and 1.2 respectively. The section properties and the material specifications are given in Table 1.1 and 1.2 respectively.

BONDEK[®] II profiled steel decking is roll-formed from hot dipped, zinc-coated, hi-tensile steel strip, in base metal thicknesses (BMT) of 0.75, 1.0 & 1.2mm. The steel strip conforms to AS1397:2011 or equivalent in accordance with BC1:2012, grade G550 Z275 for 0.75 and 1.0mm BMTs and grade G500 Z275 for 1.2mm BMT.

LYSAGHT[®] BONDEK[®] II has superior spanning capacities. 1.2mm BMT. LYSAGHT[®] BONDEK[®] II can be used as a permanent formwork spanning up to 4.0m unpropped used in steel-framed construction. LYSAGHT[®] BONDEK[®] II provides efficient reinforcement in slab construction for steel-framed buildings, concrete-framed buildings and in buildings with masonry load bearing walls. The excellent shear bond resistance developed between BONDEK[®] II ribs and concrete enables highly efficient composite action to be achieved in a composite BONDEK[®] II slab.

LYSAGHT[®] BONDEK[®] II composites slabs can be designed to achieve a fire-resistance of up to 240 minutes. For fire resistance levels of 90 and 120 minutes, the BONDEK[®] II ribs contribute significantly to the resistance of the slab in fire. Composite slabs incorporating LYSAGHT® BONDEK® II can be designed in a number of ways:


- Using the design tables given in this manual.
- Calculate from first principles using the relevant Eurocodes and Singapore National Annexes and data from the current LYSAGHT[®] BONDEK[®] II design software.
- Contact your local BlueScope Lysaght Technical Sales Representative to provide additional information.

However, if in doubt you should consult a specialist where required.

Design Advantages include:

- Excellent spanning capacities for greater strength and less deflection
- Acts as permanent formwork with minimal propping and no stripping of formwork face is required
- Fast and easy to install (600mm wide) with less handling required
- Works as reinforcement with composite slab saving on concrete and reinforcement costs
- Ribs at 200mm centres creating a safe working platform with slip resistant embossments on the ribs
- Advanced Design for Fire Resistance
- New BONDEK[®] II design software gives added flexibility and ease of design
- Nationwide technical support

LYSAGHT® BONDEK® II STRUCTURAL STEEL DECKING SYSTEM TYPICAL UNPROPPED SPAN 2.6M - 3.8M

LYSAGHT® BONDEK® II structural steel profile

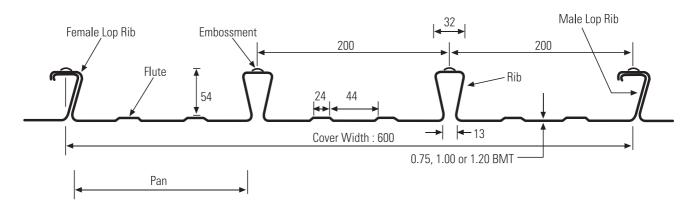


Figure 1.1 LYSAGHT® BONDEK® II profile

Table 1.1 LYSAGHT® BONDEK® II section properties

	Thickness Yield Section Modulus Area		Cross- sectional area of BONDEK	Second Moment	Sheeting Elastic Centroid	Mass		Coverage	
	BMT (mm)	MPa	Z _x 10 ³ mm ³ /m	A _{sh} (mm²/m)	I _x 10 ⁴ mm ⁴ /m	d _{cb} (mm)	kg/m²	kg/m	m²/t
LYSAGHT® BONDEK® II	0.75	550	12.50	1259	47.98	15.3	10.3	6.18	97.13
Structural Steel Decking Profile	1.0	550	16.69	1678	64.08	15.5	13.6	8.14	73.71
J	1.2*	500	20.03	2014	76.90	15.5	16.2	9.71	61.79

*Subject to availability

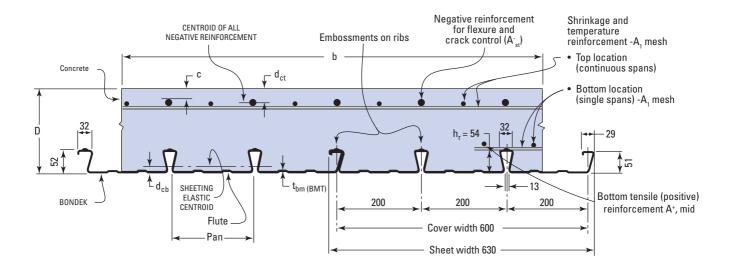


Figure 1.2 BONDEK® II dimensions (2 sheets shown) (Fire reinforcement is not shown, see Chapter 5)

2. PURPOSE AND SCOPE OF THIS PUBLICATION

As stated in the Preface and Introduction, the purpose of this Manual is to facilitate the design of LYSAGHT[®] BONDEK[®] II in its use as formwork (with and without propping) and within concrete slabs for both steel-framed and concrete-framed buildings. It has been developed in accordance with the latest Eurocodes and Singapore National Annexes. The Manual includes the following information:

- Formwork Design and Spanning Tables (Section 3)
- Composite Slab Design (Section 4)
- Design for Fire (Section 5)
- Design Tables Steel-framed construction (Section 6)
- Construction and Detailing (Section 7)

Section 6 gives tabulated solutions for composite slabs in typical design situations.

Use this Manual's tables for typical design cases. If the appropriate table is not in this Manual, try the LYSAGHT® BONDEK® II design software, which is available from the LYSAGHT® website, at: www.lysaght.com.sg, to assist in designing other cases. If none of these options provides a suitable solution, contact your local BlueScope Lysaght Technical Sales Representative to provide additional information.

The information presented by the tabulated solutions of Sections 3 and 6 is intended for guidance only. This information is to be used only in conjunction with a consulting structural engineer.

3. FORMWORK DESIGN

3.1 Introduction

The installation of LYSAGHT[®] BONDEK[®] II follows traditional methods for quick and easy installation. It is available in long lengths so large areas can be quickly and easily covered to form a safe working platform during construction. LYSAGHT[®] BONDEK[®] II provides a cover width of 600 mm, which allows quick installation.

Formwork design calculations are covered in this section, geometric layout considerations are generally covered in Section 7 (Construction and Detailing).

Our design tables may be used to detail BONDEK® II acting as structural formwork, provided the following conditions are satisfied.

3.2 Recommended deflection limits

N.A.2.15 to SS EN 1994-1-1:2009 defines suitable deflection limits for formwork. In addition, we recommend a deflection limit of L/180 for the design of composite slabs in which good general alignment is required, so that the soffit has a good visual quality when viewed as a whole.

We consider span/130 to be a reasonable maximum deflection limit appropriate for profile steel sheeting in situations where visual quality is not significant.

The design rules presented may be used for deflection limits other than those stated above however, for deflection greater than span/130, you may contact our information service.

3.3 Loads for design

LYSAGHT[®] BONDEK[®] II shall be designed as formwork for two stages of construction according to SS EN 1991-1-6:2009.

Stage I

Prior to the placement of the concrete:

- · During handling and erection of the formwork; and
- Once the formwork is erected but prior to the placement of the concrete.

Loads:

- Self weight of formwork
- Construction load (workmen and equipment)
 Qca = 1kPa according to (N.A. 2.12 to SS EN 1991-1-6:2009)
- Construction (storage) load Qcb should not exceed 1kPa. Use BONDEK[®] II design software for higher loads.

<u>Stage II</u>

During placement of the concrete up until the concrete has set (until fck reaches 20MPa and concrete is able to act flexurally to support additional loads such as stacked materials).

NOTE: No loads from stacked materials are allowed until the concrete has set.

 Different pattern loading shall be considered, including when one formwork span only is loaded with live loads, loads due to stacked materials and wet concrete.

Loads:

- Construction loads during concrete cast Qca = 0.75kPa according to (N.A. 2.13 to SS EN 1991-1-6:2009)
- Self weight of concrete and formwork
- Mounding of concrete = 0.75kPa over an area of 3.0 x 3.0m and zero over remainder

3.4 Use of formwork tables

The formwork tables presented in Section 3.5 are based on the following assumptions and constraints. The reader needs to ensure that the particular situation being designed falls within these assumptions and constraints.

- These tables can be used for different types of construction (steel-frame, re-inforced concrete-frame, masonry wall supports) provided BONDEK[®] II sheets are securely fixed to all permanent and temporary supports at every pan.
 - Suitable secure fixing methods should be used such as spot welds, self drilling screws or drive nails.
 - Temporary props are equally spaced within each slab span.
 - Ratio of two adjacent slabs spans equal 1:1, that is L/L = 1.

There are two sets of formwork tables:

- Deflection limit L/180
- Deflection limit L/130
- The tables shall be used for normal density concrete (26kN/m³).
- 3. The lines of support shall extend across the full width of the sheeting and have a minimum bearing 50 mm at the ends of the sheets and 100 mm at intermediate supports over which sheeting is continuous, including at props. 25mm minimum bearing length at the ends of sheets is acceptable in concrete frame construction.
- 4. The tables are based on construction loads according to Section 3.3 of this manual.

- Tables developed based on maximum BONDEK[®] II length of 10,000mm. Total length of BONDEK[®] II sheets specified should not exceed maximum length subject to manufacturing and transportation limitations.
- No loads from stacked materials are allowed until the concrete has set.
- 7. The sheets shall not be spliced or jointed.
- Allowance for the weight of reinforcement as well as the effect of ponding has been taken into account. (For L/130 deflection limit as per N.A. 2.15 to SS EN 1994-1-1:2004)
- 9. Supports shall be effectively rigid and strong to support construction loads.
- 10. The sheeting shall not have cantilever portions.
- 11. Wet concrete deflection of BONDEK[®] II = L/180 or L/130, where L is the distance between centres of props or permanent supports.
- 12. The information contained in the publication is intended for guidance only. This information to be used only in conjunction with a consulting structural engineer.
- Further details can be sought from your local BlueScope Lysaght Technical Sales Representative to provide additional information.

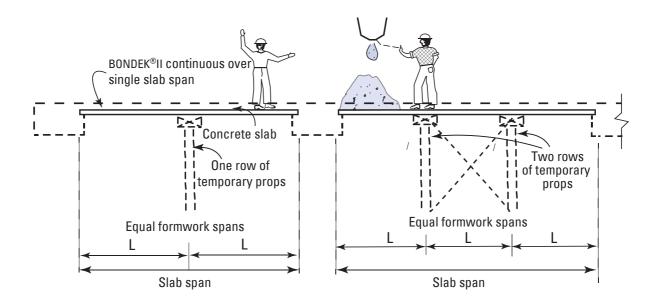


Figure 3.1a LYSAGHT[®] BONDEK[®] II formwork for concrete frame

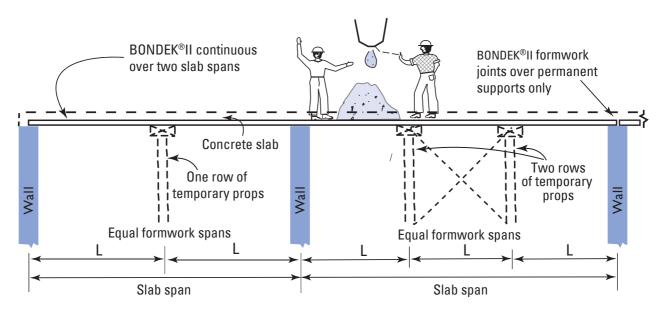


Figure 3.1b LYSAGHT® BONDEK® II formwork for masonry

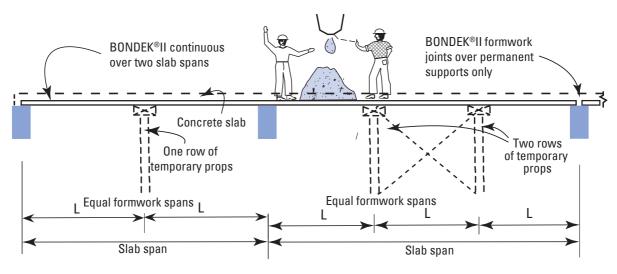


Figure 3.1c LYSAGHT® BONDEK® II formwork for steel frame

3.5 LYSAGHT® BONDEK® II Formwork/ slab span tables

Maximum slat	aximum slab spans, mm												
	0.75 mn	n BMT BON	IDEK® II	1.00 mn	n BMT BON	IDEK® II	1.20 mn	n BMT BON	DEK [®] II				
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No of props per span						
	0	1	2	0	1	2	0	1	2				
110	2300	4450	6700	2550	5550	8350	2700	6350	9550				
120	2250	4250	6400	2450	5350	8000	2600	6100	9150				
130	2200	4100	6150	2400	5150	7700	2550	5850	8800				
140	2150	3900	5900	2350	4950	7450	2500	5650	8450				
150	2100	3800	5700	2300	4800	7200	2450	5450	8250				
160	2050	3650	5500	2250	4600	6950	2400	5250	7900				
170	2000	3500	5300	2200	4500	6750	2350	5100	7650				
180	1950	3400	5100	2150	4350	6550	2300	4950	7450				
190	1900	3300	4950	2100	4250	6350	2250	4800	7200				
200	1850	3200	4800	2100	4100	6200	2200	4650	7000				
210	1800	3100	4700	2050	4000	6000	2150	4550	6850				
220	1750	3050	4550	2000	3900	5850	2150	4450	6650				
230	1750	2950	4450	1950	3800	5750	2100	4350	6500				
240	1700	2950	4350	1950	3750	5600	2100	4250	6350				
250	1650	2800	4250	1900	3650	5500	2050	4150	6200				

Maximum slab spans, mm

Single span L/130

	0.75 mn	n BMT BON	DEK [®] II	1.00 mn	n BMT BON	DEK [®] II	1.20 mn	n BMT BON	DEK [®] II
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No o	f props per	span
D (iiiii)	0	1	2	0	1	2	0	1	2
110	2450	4400	6600	2700	5450	8150	2850	6200	9200
120	2400	4200	6300	2650	5250	7850	2800	5950	8900
130	2350	4050	6050	2600	5050	7550	2750	5750	8550
140	2300	3900	5800	2550	4850	7300	2700	5550	8250
150	2250	3750	5600	2500	4700	7050	2650	5350	8000
160	2200	3600	5400	2450	4550	6850	2600	5200	7750
170	2150	3500	5250	2400	4450	6650	2550	5050	7500
180	2100	3400	5100	2350	4300	6450	2500	4900	7300
190	2100	3300	4950	2300	4200	6300	2450	4750	7100
200	2050	3200	4800	2250	4100	6100	2400	4600	6900
210	2000	3100	4650	2250	4000	5950	2350	4500	6750
220	1950	3000	4550	2200	3900	5800	2350	4400	6600
230	1950	2950	4400	2200	3800	5700	2300	4300	6450
240	1900	2850	4300	2150	3700	5550	2300	4200	6300
250	1900	2800	4200	2100	3600	5450	2250	4100	6150

NOTES: 1. These are formwork selection tables only. Maximum slab spans in these tables shall be designed by a qualified structural engineer.

2. Use LYSAGHT® BONDEK® II design software for support widths other than 100mm.

3. Live Load due to stacked materials before concete is placed shall not exceed 1kPa.

4. Refer to 'Use of formwork tables' when using these tables.

5. BONDEK® II sheets continue over single slab span.

6. Formwork deflections limits L/180 (Visual appearance important).

7. Formwork deflections limits L/130 (Visual appearance not important).

Maximum slab spans, mm

Double span L/180

	0.75 mn	n BMT BON	IDEK® II	1.00 mn	n BMT BON	IDEK® II	1.20 mn	n BMT BON	DEK [®] II		
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No o	f props per	span		
D (iiiii)	0	1	2	0	1	2	0	1	2		
110	2900	4450	6700	3600	5550	8350	3750	6350	9550		
120	2850	4250	6400	3500	5350	8000	3700	6100	9150		
130	2750	4100	6150	3400	5150	7700	3600	5850	8800		
140	2700	3900	5900	3300	4950	7450	3500	5650	8450		
150	2650	3800	5700	3250	4800	7200	3450	5450	8200		
160	2550	3650	5500	3200	4600	6950	3350	5250	7900		
170	2500	3500	5300	3100	4500	6750	3300	5100	7650		
180	2450	3400	5100	3050	4350	6550	3250	4950	7450		
190	2400	3300	4950	3000	4250	6350	3200	4800	7200		
200	2350	3200	4800	2950	4100	6200	3150	4650	7000		
210	2300	3100	4700	2900	4000	6000	3100	4550	6850		
220	2300	3050	4550	2850	3900	5850	3050	4450	6650		
230	2250	2950	4450	2800	3800	5750	3000	4350	6500		
240	2200	2900	4350	2750	3750	5600	2950	4250	6350		
250	2150	2800	4250	2700	3650	5500	2900	4150	6200		

Maximum slab spans, mm

Double span L/130

	0.75 mn	n BMT BON	DEK [®] II	1.00 mn	n BMT BON	DEK [®] II	1.20 mn	n BMT BON	DEK [®] II
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No o	f props per	span
	0	1	2	0	1	2	0	1	2
110	2850	4400	6600	3550	5450	8150	4000	6150	9250
120	2800	4200	6300	3500	5200	7850	3900	5900	8900
130	2700	4050	6050	3400	5050	7550	3800	5700	8600
140	2650	3900	5850	3300	4850	7300	3700	5500	8300
150	2600	3750	5600	3250	4700	7050	3650	5350	8000
160	2550	3600	5450	3200	4550	6850	3550	5150	7750
170	2500	3500	5250	3100	4400	6650	3500	5000	7550
180	2450	3400	5100	3050	4300	6450	3450	4850	7300
190	2400	3300	4950	3000	4200	6300	3350	4750	7100
200	2350	3200	4800	2950	4050	6100	3300	4600	6900
210	2300	3100	4650	2900	3950	5950	3250	4500	6750
220	2250	3000	4550	2850	3850	5800	3200	4400	6600
230	2200	2950	4400	2800	3800	5700	3150	4300	6450
240	2200	2850	4300	2750	3700	5550	3100	4200	6300
250	2150	2800	4200	2700	3600	5450	3050	4100	6150

NOTES: 1. These are formwork selection tables only. Maximum slab spans in these tables shall be designed by a qualified structural engineer.

2. Use LYSAGHT® BONDEK® II design software for support widths other than 100mm.

3. Live Load due to stacked materials before concete is placed shall not exceed 1kPa.

4. Refer to 'Use of formwork tables' when using these tables.

5. BONDEK® II sheets continue over Two slab span.

6. Formwork deflections limits L/180 (Visual appearance important)

7. Formwork deflections limits L/130 (Visual appearance not important)

8. Equal slab spans

Maximum slab spans, mm

Triple span L/180

	0.75 mn	n BMT BON	IDEK® II	1.00 mn	n BMT BON	DEK® II	1.20 mn	n BMT BON	DEK® II		
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No of props per span				
	0	1	2	0	1	2	0	1	2		
110	2900	4450	6700	3350	5550	8350	3550	6350	9550		
120	2850	4250	6400	3250	5350	8000	3450	6100	9150		
130	2750	4100	6150	3150	5150	7700	3350	5850	8800		
140	2700	3900	5900	3050	4950	7450	3250	5650	8450		
150	2650	3800	5700	3000	4800	7200	3200	5450	8200		
160	2550	3650	5500	2950	4600	6950	3100	5250	7900		
170	2500	3500	5300	2900	4500	6750	3050	5100	7650		
180	2450	3400	5100	2800	4350	6550	3000	4950	7450		
190	2400	3300	4950	2750	4250	6350	2950	4800	7200		
200	2350	3200	4800	2700	4100	6200	2900	4650	7000		
210	2300	3100	4700	2650	4000	6000	2850	4550	6850		
220	2300	3050	4550	2600	3900	5850	2800	4450	6650		
230	2250	2950	4450	2550	3800	5750	2750	4350	6500		
240	2200	2900	4350	2500	3750	5600	2700	4250	6350		
250	2150	2800	4250	2450	3650	5500	2650	4150	6200		

Maximum slab spans, mm

Triple span L/130

	0.75 mn	n BMT BON	DEK [®] II	1.00 mn	n BMT BON	DEK [®] II	1.20 mn	n BMT BON	DEK® II
Slab depth D (mm)	No o	f props per	span	No o	f props per	span	No o	f props per	span
D ()	0	1	2	0	1	2	0	1	2
110	2850	4400	6600	3500	5450	8150	3700	6150	9250
120	2750	4200	6300	3450	5200	7850	3650	5900	8900
130	2700	4050	6050	3350	5050	7550	3550	5700	8600
140	2650	3900	5800	3300	4850	7300	3500	5500	8300
150	2550	3750	5600	3200	4700	7050	3400	5350	8000
160	2500	3600	5400	3150	4550	6850	3350	5150	7750
170	2450	3500	5250	3100	4400	6650	3300	5000	7550
180	2400	3400	5100	3050	4300	6450	3250	4850	7300
190	2350	3300	4950	3000	4200	6300	3200	4750	7100
200	2350	3200	4800	2950	4050	6100	3150	4600	6950
210	2300	3100	4650	2900	3950	5950	3100	4500	6750
220	2250	3000	4550	2850	3850	5800	3050	4400	6600
230	2200	2950	4400	2800	3800	5700	3000	4300	6450
240	2200	2850	4300	2750	3700	5550	2950	4200	6300
250	2150	2800	4200	2700	3600	5450	2950	4100	6150

NOTES: 1. These are formwork selection tables only. Maximum slab spans in these tables shall be designed by a qualified structural engineer.

2. Use LYSAGHT® BONDEK® II design software for support widths other than 100mm.

3. Live Load due to stacked materials before concete is placed shall not exceed 1kPa.

4. Refer to 'Use of formwork tables' when using these tables.

5. Equal slab spans.

6. BONDEK® II sheets continue over Three slab span.

7. Formwork deflections limits L/180 (Visual appearance important).

8. Formwork deflections limits L/130 (Visual appearance not important).

4. COMPOSITE SLAB DESIGN

4.1 Introduction

Considerable research into the behaviour of composite slabs has been performed in the past years. The efficiency of the composite slab depends on the composite action between the steel sheeting and concrete slab. The experiments indicated that the shear bond strength at the interface between the steel sheet and the surrounding concrete is the key factor in determining the behaviour of composite slabs.

The adhesion bond between the sheeting and the concrete can play a part in this behaviour. However, following the breakdown of the adhesion bond, slip is resisted by mechanical interlock and friction developed between the steel sheeting and the surrounding concrete. The mechanical interlock and friction depend upon the shape of the rib, thickness of the sheet and size and frequency of the embossments.

This chapter explains the parameters upon which our design tables are based. Solutions to your design problems may be obtained by direct reference to the current version of our LYSAGHT[®] BONDEK[®] II design software.

The design solutions are based on linear elastic analysis according to SS EN 1994-1-1:2009 Section 9.7.3 (7) and partial shear connection theory. Data about composite performance of LYSAGHT[®] BONDEK[®] II slabs have been obtained from full-scale slab tests.

Use the appropriate LYSAGHT[®] design software in other cases (concrete grades, environmental classifications, fire ratings, moment redistribution, etc.).

The tables provide solutions for steel-frame (or other narrow supports like masonry walls) provided the following conditions are satisfied.

4.2 Design loads

4.2.1 Strength load combinations

For strength calculations, design loads for both propped and unpropped construction shall be based on the following load combinations.

Load combinations and pattern loading shall be considered according to:

- SS EN 1991-1-1:2008 Section 6.2.1
- Table NA A1.2 (B) to SS EN 1990:2008

 $F_d = 1.35 G_k + 1.5 Q_k$ where $G_k = (G_c + G_{sh} + G_{sdl})$ where $G_c =$ self weight of concrete;

 G_{sh} = self weight of sheeting;

G_{sdl} = superimposed dead load (partitions, floor tiles, etc.)

- F_d = Design value of an action
- Q_{k} = Characteristic value of a single variable action
- G_{ν} = Characteristic of a permanent action

4.2.2 Serviceability load combinations

Our load tables are based on deflections due to loading applied to the composite slab according to:

- SS EN 1992-1-1:2008 Sections 7.4.3; 7.4.1
- SS EN 1994-1-1:2009 Section 9.8.2
- NA. 2.2.6 to SS EN 1990:2008

Crack control is based on:

- SS EN 1992-1-1:2008 Section 7.3.4
- Table NA. 4 to SS EN 1992-1-1:2008

 $F_{d} = G_{k} + \Psi_{2} Q_{k}$

 ψ_2 = Factor for permanent value of a variable action per SS EN 1990:2008 Table A1.1

4.2.3 Superimposed dead load

The maximum superimposed dead load (G_{sdl}) assumed in our design tables is 1.0 kPa and 3.0kPa. Use LYSAGHT[®] BONDEK[®] II design software for other G_{sdl} loads.

4.3 Design for strength

4.3.1 Negative bending regions

a) Negative bending strength

For the bending strength design in negative moment regions, the presence of the sheeting in the slab is ignored and the slab shall be designed as conventional reinforced concrete solid slab. For this purpose, use the provisions of SS EN 1992-1-1:2008

b) Shear strength

The strength of a slab in shear shall be designed as per the guidelines outlined in:

- SS EN 1992-1-1:2008 Clause 6.2.2
- Table NA.1 to SS EN 1992-1-1:2008

The Design tables are based on these guidelines.

4.3.2 Positive bending regions

a) Positive bending strength

Positive bending capacity shall be calculated as per SS EN 1994-1-1:2009 Clause 9.7.2. It takes into consideration partial shear connection theory and the design tables have been developed in accordance with it.

b) Shear strength

The positive shear capacity can be calculated as per SS EN 1992-1-1:2008 Clause 6.2.2. Partial shear connection theory is used for the contribution of $\mathsf{BONDEK}^{\circledast}\mathsf{II}$.

4.4 Design for durability and serviceability

4.4.1 Exposure classification and cover

The minimum concrete cover (c) to reinforcing steel, measured from the slab top face is 25mm coresponding to Exposure Classes up to XC3 and Structural Class up to S4. Use BONDEK[®] II software for all other classifications.

4.4.2 Deflections

Deflections are calculated using method given in:

- SS EN 1992-1-1:2008 Sections 7.4.3; 7.4.1
- SS EN 1994-1-1:2009 Section 9.8.2 (5)

4.4.3 Crack control

The Design tables have been developed based on crack control calculating crack widths according to:

- SS EN 1992-1-1:2008 Section 7.3.4
- Table NA.4 to SS EN 1992-1-1:2008

 $\mathsf{F}_{\mathsf{d}} = \mathsf{G}_{\mathsf{k}} + \psi_2 \, \mathsf{Q}_{\mathsf{k}}$

4.5 Detailing of conventional reinforcement

Conventional tensile reinforcement in negative moment regions must be detailed in accordance with relevant requirements for one way slabs.

Pattern 1

Negative moment (at supports) regions must be designed to satisfy the requirements of SS EN 1992-1-1:2008 Section 9. The composite slab negative-moment regions can be treated as solid reinforced-concrete sections.

Pattern 2

When live loads exceed twice the dead load, at least one third of negative reinforcement must continue over a whole span.

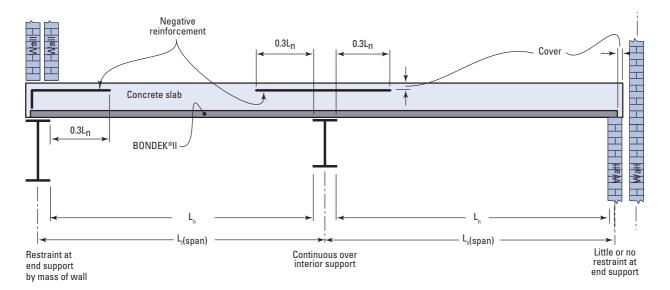


Figure 4.1 Pattern 1 for conventional reinforcement

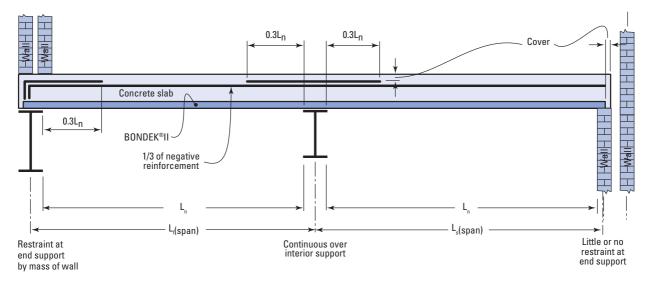


Figure 4.2 Pattern 2 for conventional reinforcement when imposed load exceeds twice the dead load

4.6 Use of tables given in Section 6

The design solutions given in the tables presented in Section 6 is based on the design principles given in this section and the following assumptions and constraints. Other constraints are stated in Section 6.1. The reader needs to ensure that the particular situation being designed falls within these assumptions and constraints.

- 1. The concrete shall satisfy the requirements of SS EN 1992-1-1:2008 Section 3.1.
- The lines of support extend across the full width of the sheeting and have a minimum bearing of 50mm at the ends of the sheets, and 100mm minimum at intermediate supports over which sheeting is continuous.
- 3. Spans are equal.
- 4. The slab has a uniform cross-section.
- 5. The design loads for serviceability and strength design must be uniformly-distributed and static in nature.
- 6. The bending moments at the supports are only caused by the action of vertical loads applied to the slab.
- 7. The geometry of the steel sheeting profile must conform to the dimensions and tolerances shown on our production drawings. Sheeting with embossments less than the specified lower characteristic value shall not be used compositely unless the value of longitudinal shear resistance is revised.

- 8. Material and construction requirements for conventional reinforcing steel shall be in accordance with:
 - SS EN 1992-1-1:2008 Section 3.2
 - SS 561:2010 Class B
 - SS 560:2010 Class B
- 9. BONDEK[®] II shall not be spliced, lapped or joined longitudinally in any way.
- 10. The permanent support lines shall extend across the full width of the slab.
- 11. Composite action shall be assumed to exist between the steel sheeting and the concrete once the concrete in the slab has attained a compressive strength of 20MPa, that is $f_{\rm ck} \ge 20$ MPa. Prior to the development of composite action during construction, potential damage to the shear connection shall be avoided; and no loads from stacked materials are allowed.
- 12. Detailing of conventional tensile reinforcement over negative moment regions shall be arranged in accordance with the Figures 4.1 and 4.2. Refer to SS EN 1992-1-1:2008 Section 9 for more information on detailing of tensile reinforcement in one-way slab.
- 13. Only LYSAGHT[®] BONDEK[®] II profiles can be used with this manual. High design value of longitudinal shear strength of composite slab, $\tau_{u,Rd}$, responsible for composite performance are achieved due to the advanced features of LYSAGHT[®] BONDEK[®] II.

5. DESIGN FOR FIRE

5.1 Introduction

During the design of composite floor slabs exposed to fire, it is essential to take into account the effect of elevated temperatures on the material properties. The composite slabs should be assessed with respect to structural adequacy, thermal insulation and integrity. The minimum required thickness of composite slab to satisfy the insulation and integrity criterion is presented in Section 5.3. Design of slabs for the structural adequacy is presented in Section 5.4.

This Section discusses the parameters relating to the exposure of the soffit to fire, upon which our design tables are based. Solutions to your design problems may be obtained by direct reference to either our design tables, or our LYSAGHT® BONDEK® II design software. Software will give more economical results. BONDEK® II composite slabs are designed based on SS EN 1994-1-2:2009 and Advanced Calculation Models supplimented with test data and thermal response modelling.

Our fire design tables may be used to detail BONDEK[®] II composite slabs when the soffit is exposed to fire provided the following conditions are satisfied:

- The composite slab acts as a one-way element spanning in the direction of the sheeting ribs for both room temperature and fire conditions.
- 2. The fire design load is essentially uniformly distributed and static in nature
- 3. Transverse reinforcement for the control of cracking due to shrinkage and temperature effects is provided.
- 4. Adequate detailing of slab jointing, edges, slab holes and cavities (for penetrating, embedded or encased services) to provide the appropriate fire resistance period. Alternatively the local provision of suitable protection (such as fire spray material) will be necessary.
- 5. Reinforcement conforms to Section 5.5 of this manual.

Table 5.1

Fire resistance period Minutes	Normal density concrete D (mm)
60	90
90	110
120	125
180	150
240	170

5.2 Fire resistance periods

Five fire cases, 60, 90, 120, 180 and 240 minutes, are considered. In each fire case the fire resistance periods for structural adequacy, integrity and insulation are taken to be equal duration. Fire resistance period of 90 minutes and 120 minutes are provided in the design tables. It is recommended to use LYSAGHT[®] BONDEK[®] II design software for fire resistance period up to four hours and alternative locations for fire reinforcement.

5.3 Design for insulation and integrity

Minimum required overall depth, D of BONDEK[®] II slabs for insulation and integrity for various fire resistance periods is given in Table 5.1.

5.4. Design for structural adequacy

5.4.1 Design loads

Accidental Load Combinations according to NA 2.7 to SS EN 1992-1-2:2008 Section 4.3.1 are used, $F_d = G_{\nu} + \psi_1 Q_{\nu}$.

 $\psi_{1}\text{=}$ Factor for permanent value of a variable action per SS EN 1990:2008 Table A1.1

5.4.2 Design for strength

In any specific design of a composite floor slab exposed to fire, it is essential the strength reduction factors account for the adverse effect of elevated temperatures on the mechanical properties of concrete and steel as well as a strength of shear bond capacity. The strength and structural adequacy must be checked in all potentially critical cross-sections for the given period of fire exposure considering the strength reduction factors.

No additional fire reinforcement is normally necessary for typical BONDEK®II composite slabs with fire resistance up to 90 minutes. Small amounts fire reinforcement may be necessary for 120 minutes fire resistance.

5.5 Reinforcement for fire design

The arrangement of additional fire reinforcement for fire design is shown in Figure 5.1.

- Some additional reinforcement may be necessary in some cases, in addition to any mesh and negative reinforcement required by our tables for composite slab design.
- The location of reinforcement A-_{stf} for Fire detail 1 is in a single top layer at a depth of d_{ct} below the slab top face (refer to Figure 5.1). This detail is applicable to continuous slabs only, this option is used for interior spans in our design tables.
- The location of reinforcement $A_{t_{stf}}$ for Fire detail 2 is in a single bottom layer at a distance of y_b above the slab soffit (refer to Figure 5.1). This option is used for single spans and end spans of continuous slabs in our design tables.

- The cross-sectional area of the additional reinforcement for fire design is designated A+_{st,f} in our tables (B500B with bar diameter = 12mm or less).
- The negative reinforcement (A-_{st}) and the additional fire reinforcement (A+_{stf} or A-_{stf} as applicable), shall be located as shown in Figure 5.1 & 5.2.
- Location of mesh is at bottom for single spans and top for continuous spans. (See also Figure 1.2)

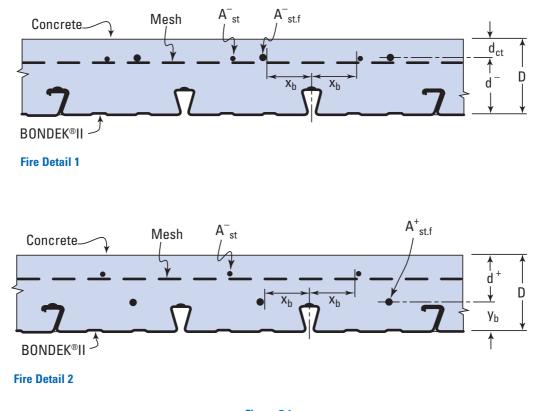
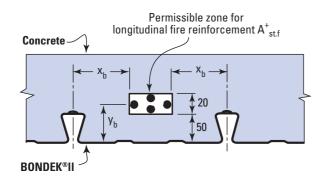



Figure 5.1 Details of reinforcement for fire design

The longitudinal bars which make up A^{+}_{stf} should be located within the zone shown in Figure 5.2.

 $x_{b} = 85 \text{ mm minimum}$

 $y_{b} = 60 \text{ mm}$ average

NOTES:

1. Fire option 1 (Top location of additional fire reinforcement) is used in design tables for interior spans.

Fire option 2 (Bottom) is used in design tables for simple and end spans.

 Recommended bottom location of fire reinforcement is chosen for practical reasons (to place fire bars on transverse bars laid on top of Bondek[®] II ribs). Lower location of fire bars with cover down to 25mm from soffit may give more economical results - please consult your local BlueScope Lysaght Technical Sales representative. Design tables are based on location as shown above in Figure 5.2.

6. DESIGN TABLES - STEEL-FRAMED CONSTRUCTION

6.1 Use of design tables

The design parameters specific for each table are given in the tables:

- Spans: single, continuous, end or interior
- Spans: centre-to-centre (L)
- Thickness of the slab (D)
- Characteristic imposed 'live' load (Q_k)
- BONDEK[®] II Base metal thickness (BMT): 0.75mm

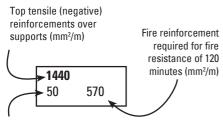
The rest of parameters are common for all tables and listed below:

- · More than four spans for continuous spans, equal spans
- Concrete grade: f_{ck}/f_{ck cube} equal spans = 30/37 MPa
- Type of construction: steel-frame construction or equivalent
- Density of wet concrete: 26kN/m³
- LYSAGHT[®] BONDEK[®] II used as a structural deck with thickness 0.75 ,1.0 or 1.2mm BMT
- Minimum 100 mm width of permanent supports
- Up to XC3 exposure classification and up to S4 Structural Class (25mm cover for negative reinforcement)
- Composite slab deflection limits: L/250 for total loads and L/500 for incremental deflection
- Crack control required
- 1 kPa and 3 kPa of superimposed dead load (G_{sdl}) in addition to self weight
- Reinforcement B500B for negative and fire reinforcement with maximum 12mm bar diameter

- Location of negative reinforcement as shown on Fig. 1.2
- Location of fire reinforcement as shown on Fig. 6.1 and Fig. 6.2
- Shrinkage mesh (Fabric = WA8)
- Formwork with at least one temporary support per span assumed (fully supported conditions)
- Moment redistribution from hogging to sagging areas required

NOTES:

- Slab is designed for unit width (1.0m width)
- Negative and fire reinforcement shown in tables is in addition to shrinkage mesh WA8. If negative fire reinforcement is required, at least one bar per LYSAGHT[®] BONDEK[®] II rib should be placed. Smaller bar diameter may result in less negative and fire reinforcement.
- ψ₁=0.5
- ψ₂=0.3
- kt = 0.6
- $\psi(\infty, t_0)$ creep factor= 2.5


6.2 Interpretation of table solutions

KEY · SINGLE SPANS

Fire reinforcement required for fire resistance of 120 minutes (mm²/m)

Bottom reinforcement required for fire resistance of 90 minutes (mm²/m)

KEY - CONTINUOUS SPANS

Fire reinforcement required for fire resistance of 90 minutes (mm²/m)

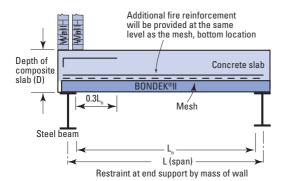
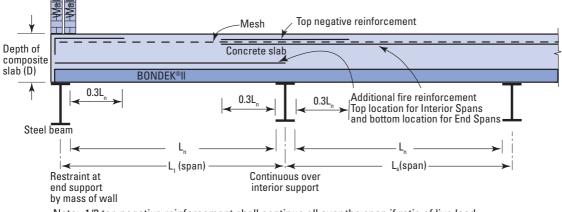



Figure 6.1 LYSAGHT[®] BONDEK[®] II for single spans.

NOTES:

- Areas without cells mean that a design solution is not possible based on input parameters and design options presented in this manual. Contact your local BlueScope Lysaght Technical Sales Representative for further options.
- 2. Single spans do not require top tensile reinforcement, relevant cells are not shown.
- 3. All spans are centre-to-centre.
- 4. A dash (-) means no fire reinforcement is necessary.
- N/A means a design solution with this particular fire rating is not possible.
- 6. Top tensile/negative reinforcement is additional to shrinkage mesh area
- Nominal continuity reinforcement for single spans should be designed according to SS EN 1994-1-1:2009 Section 9.8.1 (2) or by using BONDEK[®] II design software

Note: 1/3 top negative reinforcement shall continue all over the span if ratio of live load to total dead load is more than 2.

Figure 6.2 LYSAGHT[®] BONDEK[®] II continuous spans.

6.3 Single span tables: G_{sdl} = 1kPa

onigio opuno i														
Span (mm)		Characteristic Imposed Load O _k (kPa)G _{sdl} = 1kPa												
Shan (mm)		1.5	2.5			3.5		5		7.5		10.0		
1800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
2200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
2400	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
2600	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
2800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	40	N/A		
3000	-	N/A	-	N/A	-	N/A	-	N/A	40	N/A				
3200	-	N/A	-	N/A	-	N/A	10	N/A	110	N/A				
3400	-	N/A	-	N/A	-	N/A								
3600	-	N/A												
3800														

Single spans 110mm slab

Single spans 120mm slab

Span (mm)				Characte	eristic	Imposed	Load C	ם _، (kPa)G	_{adl} = 1k	Pa		
Span (mm)		1.5	2.5			3.5		5		7.5	10.0	
1800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2600	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	10	N/A
3200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	70	N/A
3400	-	N/A	-	N/A	-	N/A	-	N/A	60	N/A		
3600	-	N/A	-	N/A	-	N/A						
3800	-	N/A										
4000												

Single spans 130mm slab

Span (mm)				Characte	eristic	Imposed	Load O	, (kPa)G	_{sdl} = 1kF	Pa		
Shan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	20
3000	-	-	-	-	-	-	-	-	-	20	-	80
3200	-	-	-	-	-	-	-	10	-	80	-	150
3400	-	-	-	-	-	10	-	50	-	140	50	220
3600	-	-	-	20	-	50	-	110	30	200		
3800	-	20	-	60	-	100						
4000	-	60										
4200												

Single spans 150mm slab

Span (mm)				Characte	eristic	Imposed	Load C	l _k (kPa)G	_{sdl} = 1kl	Pa		
opan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	30
3400	-	-	-	-	-	-	-	-	-	30	-	90
3600	-	-	-	-	-	-	-	10	-	80	-	140
3800	-	-	-	-	-	10	-	50	-	130	30	200
4000	-	-	-	20	-	50	-	100	20	180		
4200	-	20	-	60	-	90						
4400	-	60										
4600												

Single spans 175mm slab

Span (mm)				Characte	eristic	Imposed	Load O	, (kPa)G	_{sdl} = 1ki	Pa		
opan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	-	-	-	-	-	-	-	-	-	-	-
3600	-	-	-	-	-	-	-	-	-	-	-	40
3800	-	-	-	-	-	-	-	-	-	30	-	90
4000	-	-	-	-	-	-	-	20	-	80	-	140
4200	-	-	-	-	-	10	-	50	-	120	20	190
4400	-	-	-	20	-	50	-	100	10	170		
4600	-	30	-	60	-	90	-	140				
4800	-	60	-	100								
5000												

Snon (mm)				Characte	eristic	Imposed	Load O	l _k (kPa)G	_{sdl} = 1kF	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	-	-	-	-	-	-	-	-	-	-	-
3600	-	-	-	-	-	-	-	-	-	-	-	-
3800	-	-	-	-	-	-	-	-	-	-	-	20
4000	-	-	-	-	-	-	-	-	-	10	-	60
4200	-	-	-	-	-	-	-	-	-	50	-	110
4400	-	-	-	-	-	-	-	40	-	90	-	150
4600	-	-	-	10	-	30	-	70	-	140	30	200
4800	-	10	-	40	-	70	-	110	20	180	80	260
5000	-	40	-	80	-	110	-	150				
5200	-	80	-	110	-	150						
5400	-	110										
5600												

Single spans 200mm slab

Single spans 250mm slab

Cross (mm)				Characte	eristic I	mposed	Load O	, (kPa)G	_{sdl} = 1kF	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	-	-	-	-	-	-	-	-	-	-	-
3600	-	-	-	-	-	-	-	-	-	-	-	-
3800	-	-	-	-	-	-	-	-	-	-	-	-
4000	-	-	-	-	-	-	-	-	-	-	-	-
4200	-	-	-	-	-	-	-	-	-	-	-	10
4400	-	-	-	-	-	-	-	-	-	10	-	50
4600	-	-	-	-	-	-	-	-	-	40	-	90
4800	-	-	-	-	-	-	-	30	-	80	-	130
5000	-	-	-	10	-	30	-	60	-	120	10	170
5200	-	10	-	40	-	60	-	100	-	160	40	220
5400	-	40	-	70	-	90	-	130	30	200	80	260
5600	-	70	-	100	-	130	10	170	60	240	120	310
5800	-	110	-	130	-	160	40	210	100	280		
6000	-	140	10	170	30	200	70	250				
6000												

6.4 Interior span tables: G_{sdl} = 1kPa

Interior Spans 110mm slab

Snon (mm)				Charact	eristic I	mposed	Load Q	_k (kPa)G	_{sdl} = 1kl	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0		0		0		0		0		0	
1800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	0		0		0		0		0		0	
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	0		0		0		0		0		0	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	0	N1/A	0	NL / A	0	NI /A	0	NI/A	0	N1 / A	10	
	-	N/A	-	N/A	-	N/A	- 0	N/A	-	N/A	- 50	N/A
2600	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
	0	14,7 (0	14,71	0	14/71	0	14/71	30	14/71	100	14/7
2800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
0000	0		0		0		0		80		160	
3000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3200	0		0		0		30		120		220	
3200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3400	0		0		0		70		170		300	
0400	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3600	0		0		40		110		230			
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
3800	0	N1/A	20	NL / A	70	NI /A	150	N1 / A	300	N1 / A		
	- 0	N/A	- 50	N/A	- 100	N/A	- 190	N/A	- 430	N/A		
4000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	10	14/71	80	14/74	140	11/7	240	11/71	620	14/71		
4200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
4400	40		110		180		320					
4400	-	N/A	-	N/A	-	N/A	-	N/A				
4600	70		140		220		430					
4000	-	N/A	-	N/A	-	N/A	-	N/A				
4800	100		180		280		590					
1000	-	N/A	-	N/A	-	N/A	-	N/A				
5000	130		220		360							
	-	N/A	-	N/A	-	N/A						
5200	160 -	N/A	260 -	NL/A	480 -	N/A						
	- 190	IN/A	- 750	N/A	-	N/A						
5400	-	N/A	-	N/A								
5600												

Interior Spans 120mm slab

Span (mm)				Characte	eristic	mposed	Load O	_k (kPa)G	_{sdl} = 1k	Pa		
opan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0		0		0		0		0		0	
1000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	0		0		0		0		0		0	
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	0		0		0		0		0		0	
2200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	0		0		0		0		0		0	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2600	0		0		0		0		0		20	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2800	0		0		0		0		0		70	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3000	0		0		0		0		40		110	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3200	0	N1 / A	0	N1 / A	0	N1 / A	0	NI / A	80	N1 / A	170	N1 / A
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3400	0	N1 / A	0	N1 / A	0	N1 / A	30	NI / A	130	N1 / A	220	NI / A
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3600	0	NL/A	0	N1/A	10	N1 / A	70	N1 / A	170	NL / A	280	NI / A
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3800	0	N/A	0	N/A	40	N/A	110	N/A	230	N/A	360	N/A
	- 0	N/A	20	IN/A	- 70	IN/A	- 150	N/A	- 280	N/A	-	IN/F
4000	U	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	0	N/A	50	N/A	- 100	IN/A	- 190	N/A	350	N/A		
4200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	20	N/A	80	N/A	140	N/A	230	N/A	470	N/A		
4400	20	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	40	N/A	110	N/A	180	N/A	280		630	N/A		
4600	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	70	,,,	140	,,,,	220	,,,	340	,, , ,		,, .		
4800	-	N/A	-	N/A		N/A	-	N/A				
	90	,	180	,	260	,	440	,				
5000	-	N/A	-	N/A	-	N/A		N/A				
	120		210		300		570					
5200	-	N/A	-	N/A	-	N/A	-	N/A				
F 400	150		250		370		740					
5400	-	N/A	-	N/A	-	N/A	-	N/A				
F000	190		290		470							
5600	-	N/A	-	N/A	-	N/A						
E000	250											
5800	-	N/A										
0000												
6000												

Interior Spans 130mm slab

Snon (mm)				Charact	eristic Ir	nposed	Load Q	_k (kPa)G	_{sdl} = 1kP	a		
Span (mm)	1	.5		2.5	3			5		.5	1).0
1800	0		0	_	0		0	_	0		0	
2000	0		0		0		0		0		0	
2200	0	-	0	-	0	-	0	-	0	-	0	-
2400	0	-	0	-	0	-	0	-	0	-	-	-
2600	0	-	0	-	0	-	0	-	0	-	0	-
2800	0	-	0	-	0	-	0	-	0	-	40	-
3000	0	-	-	-	0	-	0	-	20	-	- 80	-
3200	0	-	0	-	0	-	0	-	- 50	-	120	-
3400	-	-	-	-	-	-	- 10	-	- 90	-	- 170	-
3600	0	-	-	-	0	-	40	-	- 130	-	230	-
3800	- 0	-	-	-	- 10	-	- 80	-	- 180	-	- 290	-
4000	-	-	0	-	40	-	110	-	230	-	- 350	-
4200	- 0	-	- 20	-	- 70	-	- 150	-	- 280	-	- 430	-
4400	0	-	50	-	- 110	-	190	-	330	-	-	-
4600	- 20	-	- 80	-	- 140	-	- 230	-	- 390	-		
4800	- 40	-	- 110	-	- 180	-	- 280	-	- 510	-		
5000	- 70	-	- 140	-	- 210	-	- 330	-	- 660	-		
5200	- 100	-	- 170	-	- 250	-	- 380	-	- 860	-		
5400	- 120	-	- 210	-	- 300	-	- 460	-	-	-		
5600	- 150	20	- 250	-	- 340	-	- 570	-				
5800	- 180	40	- 280	-	- 390	-	- 720	-				
6000	- 220	50	- 320	30	- 790	-	-	-				

Interior Spans 150mm slab

•			(Characte	eristic l	nposed	Load Q	, (kPa)G	_{sdl} = 1kF	Pa		
Span (mm)	1	.5		5	-	.5		5		7.5	1).0
1800	0 -	-	0 -	-	0 -	-	0	-	0	-	0 -	-
2000	0		0	-	0	-	0	-	0	-	0	-
2200	0		0		0	_	0	-	0	_	0	_
2400	0		0		0	_	0	-	0	_	0	_
2600	0		0		0		0		0	_	0	
2800	0	_	0		0	_	0	_	0	_	0	
3000	0		0		0		0		0		30	
3200	0		0	_	0	_	0		10	_	70	_
3400	0		0		0		0		40		110 -	
3600	0	-	0	-	0	-	0	-	80	-	150	-
3800	0	-	0	-	0	-	30	-	- 110	-	200	-
4000	0	-	0	-	10	-	60	-	150	-	250	-
4200	0	-	0	-	30	-	90	-	200	-	300	-
4400	0	-	- 10	-	- 60	-	130	-	- 240	-	360	-
4600	0	-	40	-	- 90	-	- 160	-	- 290	-	420	-
4800	10	-	60	-	120	-	200	-	340	-	490	-
5000	- 30	-	- 90 -	-	- 150 -	-	- 240	-	- 390 -	-	- 580	-
5200	60	-	120	-	180	-	280	-	450	-	-	-
5400	- 80	-	- 150	-	- 220	-	- 330	-	- 510	-		
5600	- 110	-	- 180	-	- 260	-	- 370	-	610	-		
5800	- 130	-	- 210	-	- 290	-	- 420	-	- 740	-		
6000	- 160 -	10 20	- 250	-	- 340	-	- 470	-	- 910	-		

Interior Spans 175mm slab

Span (mm)			(Charact	eristic lı	nposed	Load O _k	(kPa)G	_{sdl} = 1kP	a		
ypan (mm)		1.5		.5		.5	1	5		7.5	10).0
2000	0		0		0		0		0		0	
	- 0	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	0	_	0	_	0	_	0	_	0	-	0	
2600	0	-	0	-	0 -	-	0	-	0	-	0	
2800	0 -	-	0 -		0 -	-	0 -	-	0 -	-	0	-
3000	0 -	-	0	-	0 -	-	0 -	-	0 -	-	0 -	
3200	0	-	0	-	0	-	0	-	0	-	20	-
3400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	50 -	-
3600	0		0		0		0		30		90	_
3800	0	-	0	-	0	-	0	-	60	-	130 -	-
4000	0	-	0	-	0	_	20	-	90	_	170	-
4200	0		0		0		50	-	130	-	210	-
4400	0	-	0	-	20	-	70 -	-	170	_	260	_
4600	0		10	-	40		100	-	210	-	310 -	-
4800	0 -	-	30	-	70 -	-	140 -	-	250	_	360	_
5000	0 -	-	50 -	-	100 -	-	170 -	-	290 -	-	420	-
5200	30 -	-	80 -	-	130 -	-	210 -	-	340 -	-	480	-
5400	50 -	-	100 -	-	160 -	-	240 -	-	390 -	-	540 -	-
5600	70 -	-	130	-	190 -	-	280	-	440 -	-	600	
5800	90	-	160	-	220	-	320	-	490	-	670 -	-
6000	120 -		190		260		360		550			

Interior Spans 200mm slab

Span (mm)				Charact	eristic l	mposed	Load O	(kPa)G	_{sdl} = 1kP	a		
Span (mm)	,	1.5	2	5	3	.5		5	7	/.5	1().0
2000	0		0		0		0		0		0	
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	0		0		0		0		0		0	
	0	-	0	-	0	-	0	-	0	-	0	-
2400	-	-		-	-	-	-	-	-	-		-
2600	0 -	-	0	-	0 -	-	0	-	0	-	0	-
2800	0 -	-	0	-	0 -		0 -		0 -	-	0	
3000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
3200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
3400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-
3600	0 -	-	0	-	0 -	-	0 -	-	0 -	-	50 -	-
3800	0 -	-	0	-	0 -	-	0 -	-	20 -	-	80 -	-
4000	0 -	-	0	-	0 -	-	0 -	-	50 -	-	120 -	-
4200	0 -	-	0	-	0 -	-	10 -	-	80 -	-	150 -	-
4400	0 -	-	0	-	0 -	-	40 -	-	120 -	-	190 -	-
4600	0 -	-	0	-	20	-	70 -	-	150	-	240 -	-
4800	0 -	-	0	-	40 -	-	90 -	-	190 -	-	280	-
5000	0 -	-	20 -	-	60 -	-	120 -	-	230	-	330 -	-
5200	0 -	-	50 -	-	90 -	-	150 -	-	260 -	_	380 -	_
5400	20 -	-	70 -	-	120 -	-	190 -	-	310 -	-	430 -	-
5600	40 -	-	90 -	-	140 -	-	220 -	-	350 -	-	480	-
5800	60 -	-	120	-	170 -	-	260 -	-	400	-	540 -	-
6000	90 -		140		200		290		440 -		600	

Interior Spans 250mm slab

Span (mm)				Charact	eristic lı	nposed	Load O	(kPa)G	_{sdl} = 1kP	a		
span (mm)		1.5		5		.5		5		.5	1().0
2000	0		0		0		0		0		0	
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	0		0		0		0		0		0	
	0	-	-	-	0	-	-	-	0	-	0	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	0	-	0	_	0	-	0	_	0	-	0	-
2800	0		0		0		0		0		0	_
3000	0	-	0	_	0	-	0	_	0	-	0	-
3200	0		0		0		0		0		0	_
3400	0	-	0	-	0 -	-	0 -	-	0	-	0	-
3600	0		0	-	0		0	-	0		0	
3800	0	-	0	_	0	-	0	_	0	-	20	-
4000	0	-	0	-	0	-	0	-	0	-	50	_
4200	0	-	0	-	0	-	0	-	30	-	80	_
4400	0	-	0	_	0	-	0	_	50	-	110	
4600	0	-	0	_	0	-	20	_	80	-	140	_
4800	0	-	0	_	0	_	40	_	110	-	180	
5000	0	_	0	_	20	-	60	_	140 -		220	_
5200	0		10		40		90		170		260	_
5400	0	_	30	_	60 -	-	120	_	210		300	_
5600	10		50	_	90		140		240		340	_
5800	30 -	_	70	_	110 -	-	170 -	_	280	-	380	-
6000	50 -		90		140		200		310		430	

6.5 End span tables: G_{sdl} = 1kPa

END Spans 110mm slab

Concer (march)	Characteristic Imposed Load \mathbf{Q}_{k} (kPa) \mathbf{G}_{sdl} = 1kPa													
Span (mm)		1.5	2.5			3.5		5		7.5	1	0.0		
1800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A		
2000	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A		
2200	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A		
2400	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	40 -	N/A		
2600	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	30 -	N/A	90 -	N/A		
2800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	70 -	N/A	150 -	N/A		
3000	0 -	N/A	0 -	N/A	0 -	N/A	30 -	N/A	120 -	N/A	210 -	N/A		
3200	0 -	N/A	0 -	N/A	10 -	N/A	70 -	N/A	170 -	N/A	310 -	N/A		
3400	0 -	N/A	0 -	N/A	40 -	N/A	110 -	N/A	230 -	N/A				
3600	0 -	N/A	30 -	N/A	80 -	N/A	160 -	N/A	310 10	N/A				
3800	0 -	N/A	60 -	N/A	120 -	N/A	210 10	N/A	460 20	N/A				
4000	30 -	N/A	90 10	N/A	160 20	N/A	420 -	N/A						
4200	60 20	N/A	330 -	N/A										
4400														

END Spans 120mm slab

Core (mm)				Char	acteristi	c Imposed	Load O _k	(kPa)G _{sdl} =	1kPa			
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2000	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2200	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2400	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	10 -	N/A
2600	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	50 -	N/A
2800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	40 -	N/A	100 -	N/A
3000	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	80 -	N/A	160 -	N/A
3200	0 -	N/A	0 -	N/A	0 -	N/A	40 -	N/A	130 -	N/A	220	N/A
3400	0 -	N/A	0 -	N/A	20 -	N/A	70 -	N/A	180 -	N/A	280 -	N/A
3600	0 -	N/A	0 -	N/A	50 -	N/A	120	N/A	230	N/A		
3800	0 -	N/A	30 -	N/A	80 -	N/A	160 -	N/A	290 10	N/A		
4000	10 -	N/A	60 -	N/A	120 -	N/A	200 10	N/A	370 40	N/A		
4200	40 -	N/A	100 -	N/A	160 10	N/A	250 40	N/A				
4400	60 20	N/A	130 30	N/A	420 -	N/A						
4600	480 -	N/A										
4800												

Such (mm)	Characteristic Imposed Load Q_k (kPa) G_{sdi} = 1kPa													
Span (mm)		1.5		2.5	;	3.5		5		7.5	1	0.0		
1800	0	-	0	-	0	-	0 -	-	0 -	-	0 -	-		
2000	0 -	-	0 -	-	0 -		0 -		0 -	-	0 -			
2200	0	-	0	-	0		0 -		0	-	0 -	-		
2400	0 -	-	0 -		0 -		0 -		0 -	-	0 -	-		
2600	0	-	0	-	0		0 -		0	-	30 -	-		
2800	0 -	-	0 -	-	0 -		0 -	-	10 -	-	70 -	-		
3000	0	-	0	-	0		0 -		50 -	-	120 -	20		
3200	0	-	0 -	-	0 -	-	10 -	10	90 -	30	170 -	50		
3400	0 -	-	0 -	-	0 -	20	50 -	30	140 -	60	230 -	90		
3600	0 -	-	0 -	20	20 -	50	80 -	60	190 -	90	290 -	120		
3800	0 -	30	10 -	60	60 -	70	120 -	90	240 -	120	360 -	160		
4000	0 -	70	40 -	80	90 -	100	160 -	120	290 10	160				
4200	20 -	100	70 -	110	120 -	130	210 10	150	350 40	200				
4400	40 -	130	100 -	150	160 10	160	260 30	190	700 -	150				
4600	70 10	160	130 30	180	200 40	200	820 -	70						
4800	100 40	190	670 -	30										
5000														

END Spans 130mm slab

END	S	ans	15	i0mm	slab
	~	Juno			Ulub

Span (mm)				Char	acteristi	c Imposed	Load Q _k (kPa)G _{sdl} =	1kPa			
Span (mm)		1.5	:	2.5	:	3.5		5		7.5	1	0.0
1800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2600	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	20 -	-
3000	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-	60 -	-
3200	0 -	-	0 -	-	0 -	-	0 -	-	40 -	-	110 -	10
3400	0 -	-	0 -	-	0 -	-	10 -	-	80 -	20	150 -	30
3600	0 -	-	0 -	-	0 -	-	40 -	20	120 -	40	200	60
3800	0 -	-	0 -	10	20 -	30	70 -	40	160 -	70	260 -	90
4000	0 -	20	10 -	40	50 -	50	110 -	60	210 -	90	310 -	120
4200	0 -	50	30 -	70	80 -	70	140 -	90	260 -	120	380 10	150
4400	10 -	80	60 -	90	110 -	100	180 -	120	310 10	150	440 40	180
4600	30 -	100	90 -	110	140 -	130	220 10	150	360 40	180		
4800	60 -	130	120 10	140	180 20	150	270 30	180	420 60	220		
5000	90 20	150	150 30	170	210 40	190	310 60	210	1320 -	100		
5200	110 50	180	180 60	200	480 -	120	1380 -	70				
5400	510 -	60	1160 -	30								
5600												

END	S	oans	17	/5mm	slab
	-	pullo			UIUD

Span (mm)	Characteristic Imposed Load \mathbf{Q}_{k} (kPa) \mathbf{G}_{sdl} = 1kPa													
Span (mm)		1.5	2.5			3.5		5	7.5		1	0.0		
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
2400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
2600	0 -	-	0 -		0 -		0 -		0 -	-	0 -	-		
2800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
3000	0 -	-	0 -		0 -		0 -		0 -	-	20 -	-		
3200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	50 -	-		
3400	0 -	-	0 -		0 -		0 -		30 -	-	90 -	-		
3600	0 -	-	0 -	-	0 -	-	0 -	-	70 -	-	130 -	20		
3800	0 -	-	0 -		0 -		30 -	10	100 -	30	180 -	40		
4000	0 -	-	0 -	-	10 -	20	60 -	30	140 -	50	220 -	70		
4200	0 -	10	0 -	30	40 -	40	90 -	50	180 -	70	280 -	90		
4400	0 -	40	20 -	50	60 -	60	120 -	70	220 -	90	330 -	110		
4600	10 -	60	50 -	70	90 -	80	160 -	90	270 -	120	390 10	140		
4800	30 -	90	80 -	90	120 -	110	200 -	120	320 20	140	440 40	170		
5000	50 -	110	100 -	120	160 10	120	230 20	140	370 40	170	510 60	200		
5200	80 10	130	130 20	140	190 30	150	280 40	170	420 60	200	570 90	240		
5400	100 30	150	160 40	170	220 50	180	320 60	200	480 80	230				
5600	130 50	180	190 60	190	260 70	200	360 80	230	1130 -	120				
5800	160 70	200	230 80	220	400 50	190	1140 -	90						
6000	430 -	130	970 -	60	1600 -	80								

END Spans 200mm slab

Span (mm)	Characteristic Imposed Load Q_k (kPa) G_{sdl} = 1kPa													
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0		
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
2200	0 -	-	0		0		0 -	-	0 -	-	0	-		
2400	0 -		0 -	-	0 -	-	0 -	-	0 -	-	0	-		
2600	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -			
2800	0 -		0 -	-	0	-	0	-	0	-	0			
3000	0 -	-	0 -	-	0 -		0 -		0 -	-	0 -	-		
3200	0 -	-	0		0 -		0 -		0	-	20 -			
3400	0 -	-	0 -		0 -		0 -		0 -	-	50 -	-		
3600	0 -	-	0		0		0		30 -	-	90 -			
3800	0 -	-	0 -		0 -		0 -		60 -	10	120	20		
4000	0 -	-	0		0 -		30 -	10	90 -	20	160 -	40		
4200	0 -	-	0 -		10 -	20	50 -	30	130 -	40	210	50		
4400	0 -	10	0 -	30	30 -	40	80 -	50	170 -	60	250 -	80		
4600	0 -	40	20 -	50	60 -	50	110 -	70	210	80	300 -	100		
4800	10 -	60	50 -	70	90 -	70	150 -	80	250 -	100	350 10	120		
5000	30 -	80	70 -	90	110 -	100	180 -	110	290 10	130	410 20	150		
5200	50 -	100	100 -	110	140 10	120	220 10	130	340 30	150	460 50	170		
5400	70 10	120	130 10	130	180 20	140	250 30	150	390 50	170	520 70	200		
5600	100 30	140	150 30	150	210 40	160	290 50	180	440 70	200	580 90	230		
5800	120 50	170	180 50	180	240 60	190	330 70	200	490 90	230	650 110	260		
6000	150 60	190	210 70	200	280 80	210	380 90	230	540 110	260	1050 50	190		

END Spans 250mm slab

Span (mm)				Cha	racteristi	c Imposed	Load Q _k	(kPa)G _{sdl} =	1kPa			
Span (mm)		1.5		2.5	;	3.5		5		7.5	1	0.0
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
2200	0 -		0		0	-	0 -		0 -	-	0	-
2400	0 -		0	-	0	-	0 -	-	0 -	-	0	-
2600	0		0 -	-	0 -	-	0	-	0	-	0 -	-
2800	0 -		0	-	0		0	-	0 -	-	0	
3000	0	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
3200	0 -	-	0		0	-	0		0		0	
3400	0 -	-	0 -		0 -	-	0 -		0 -	-	0 -	-
3600	0 -	-	0		0	-	0 -		0 -		20	-
3800	0 -	-	0		0 -	-	0 -	-	10 -	-	60 -	-
4000	0	-	0		0	-	0 -		40 -		90 -	-
4200	0 -	-	0		0 -	-	10 -	-	60 -	10	120	20
4400	0 -	-	0		0	10	30 -	20	100 -	20	160 -	40
4600	0 -	-	0 -	20	20 -	30	60 -	30	130 -	40	200	50
4800	0 -	20	10 -	40	40 -	40	80 -	50	160 -	60	240 -	70
5000	0 -	50	30 -	60	60 -	60	110 -	70	200	80	280 -	90
5200	20 -	70	50 -	70	90 -	80	140 -	90	230	100	330 -	110
5400	40 -	80	80 -	90	120	90	170 -	100	270 10	12 0	370 20	130
5600	60 -	100	100 10	110	140 10	110	210 10	120	310 30	140	420 40	160
5800	80 20	120	130 20	130	170 30	130	240 30	140	360 40	160	470 60	180
6000	110 30	140	150 40	150	200 40	150	280 50	160	400 60	180	520 80	200

6.6 Single span tables: G_{sdl} = 3kPa

Span (mm)				Characte	eristic	mposed	Load O	, (kPa)G	_{adl} = 3kl	Pa		
Shan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2600	-	N/A	-	N/A	-	N/A	-	N/A	10	N/A	80	N/A
2800	-	N/A	-	N/A	-	N/A	10	N/A	90	N/A		
3000	-	N/A	-	N/A	40	N/A	90	N/A				
3200												

Single spans 110mm slab

Single spans 120mm slab

Span (mm)				Characte	eristic	Imposed	Load O	(kPa)G	_{sdl} = 3kl	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2600	-	N/A	-	N/A	-	N/A	-	N/A	-	30	-	N/A
2800	-	N/A	-	N/A	-	N/A	-	N/A	-	90	40	N/A
3000	-	N/A	-	N/A	-	N/A	-	N/A	50	170	120	N/A
3200	-	N/A	-	N/A	-	N/A	40	N/A				
3400												

Single spans 130mm slab

Span (mm)				Characte	eristic	Imposed	Load Q	, (kPa)G	_{sdl} = 3kF	Pa		
opan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	40
2800	-	-	-	-	-	-	-	-	-	60	-	110
3000	-	-	-	-	-	20	-	60	-	120	20	190
3200	-	20	-	50	-	80	-	120	30	190	90	270
3400	-	70	-	100	-	140	20	190				
3600												

Single spans 150mm slab

Span (mm)				Characte	eristic	Imposed	Load Q	_k (kPa)G	_{sdl} = 3kl	Pa		
opan (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	-	-	-	-	-	-	-	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	10	-	60
3200	-	-	-	-	-	-	-	10	-	70	-	120
3400	-	-	-	-	-	30	-	60	-	120	20	180
3600	-	20	-	50	-	80	-	120	20	180	70	250
3800	-	70	-	100	-	130	10	170				
4000												

Single spans 175mm slab

Cnon (mm)				Characte	eristic	Imposed	Load C	ı, (kPa)G	_{sdl} = 3kl	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	20
3400	-	-	-	-	-	-	-	-	-	20	-	70
3600	-	-	-	-	-	-	-	20	-	70	-	120
3800	-	-	-	10	-	30	-	70	-	120	10	180
4000	-	30	-	50	-	80	-	110	10	180	60	240
4200	-	70	-	100	-	120	-	160				
4400	-	110	-	140								
4600												

Single	spans	200mm	slab
--------	-------	-------	------

Snon (mm)				Characte	eristic	Imposed	Load O	_k (kPa)G	_{sdl} = 3kF	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	-	-	-	-	-	-	-	-	-	-	-
3600	-	-	-	-	-	-	-	-	-	10	-	50
3800	-	-	-	-	-	-	-	-	-	50	-	90
4000	-	-	-	-	-	10	-	40	-	90	-	140
4200	-	10	-	30	-	50	-	90	-	140	30	200
4400	-	50	-	70	-	90	-	130	20	190	70	250
4600	-	90	-	110	-	140	10	180	70	240		
4800	-	130	-	150	20	180						
5000												

Single spans 250mm slab

Snon (mm)				Characte	eristic I	mposed	Load Q	_k (kPa)G	_{sdl} = 3kF	Pa		
Span (mm)		1.5		2.5	;	3.5		5		7.5	1	0.0
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	-	-	-	-	-	-	-	-	-	-	-	-
2400	-	-	-	-	-	-	-	-	-	-	-	-
2600	-	-	-	-	-	-	-	-	-	-	-	-
2800	-	-	-	-	-	-	-	-	-	-	-	-
3000	-	-	-	-	-	-	-	-	-	-	-	-
3200	-	-	-	-	-	-	-	-	-	-	-	-
3400	-	-	-	-	-	-	-	-	-	-	-	-
3600	-	-	-	-	-	-	-	-	-	-	-	-
3800	-	-	-	-	-	-	-	-	-	-	-	30
4000	-	-	-	-	-	-	-	-	-	-	-	70
4200	-	-	-	-	-	-	-	-	-	40	-	120
4400	-	-	-	-	-	10	-	30	-	80	-	160
4600	-	10	-	20	-	40	-	70	-	120	40	210
4800	-	40	-	60	-	80	-	110	-	160	80	260
5000	-	70	-	90	-	120	-	150	30	200	120	310
5200	-	110	-	130	-	160	20	190	70	250		
5400	-	140	10	170	30	200	60	240	110	300		
5600	20	180	40	210	60	240	100	280				
5800	50	220										
6000												

6.7 Interior span tables: GsdI = 3kPa

				Charact	eristic I	mposed	Load O	, (kPa <u>)</u> G	_{sdl} = 3 <u>k</u>	Pa		
Span (mm)		1.5		2.5		3.5		5	1	7.5	1	0.0
1800	0		0		0		0		0		0	
	-	N/A	-	N/A	-	N/A	- 0	N/A	-	N/A	-	N/A
2000	0	N/A	0 -	N/A	0	N/A	-	N/A	0 -	N/A	0	N/A
2200	0		0		0		0		0		0	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	- 40	N/A
2400	0	N/A	0	N/A	0	N/A	0	N/A	0 -	N/A	40	N/A
2600	0		0		0		0		30		90	
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2800	0		0		0		0		80		150	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3000	0	N/A	0	N/A	0	N/A	40 -	N/A	120	N/A	210	N/A
	0	N/A	0	N/A	30	N/A	80		180	N/A		N/ A
3200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
3400	0		20		70		130		240			
0400	-	N/A	-	N/A	•	N/A	-	N/A	-	N/A		
3600	10	N1 / A	60	N1/A	100	N1 / A	- 180	NI /A	330	N1 / A		
	- 40	N/A	- 90	N/A	- 150	N/A	- 230	N/A	-	N/A		
3800	-	N/A	-	N/A	-	N/A	-	N/A				
4000	70		130		190		300					
4000	-	N/A	-	N/A	-	N/A	-	N/A				
4200	110		170		240		420					
	-	N/A	-	N/A	-	N/A	-	N/A				
4400	140 -	N/A	220 -	N/A	310 -	N/A	590 -	N/A				
4600	180		260		420							
4000	-	N/A	-	N/A	-	N/A						
4800	380 -	N/A										
5000												

Interior Spans 110mm slab

Interior Spans 120mm slab

Snon (mm)				Charact	eristic I	mposed	Load O	_k (kPa)G	_{sdl} = 3kF	Pa		
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0		0		0		0		0		0	
1000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	0		0		0		0		0		0	
2000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2200	0		0		0		0		0		0	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2400	0	N/A	0	N/A	0	N/A	0	N/A	0	N/A	10 -	N/A
	0	N/A	0	N/A	0	IN/A	0	N/A	0	N/A	50	IN/P
2600	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
	0		0	,	0	,	0	,	40		100	, .
2800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
2000	0		0		0		10		80		160	
3000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3200	0		0		0		50		130		220	
5200	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3400	0		0		30		90		180		280	
	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A
3600	0	N1/A	30	NI / A	70	N1 / A	130		240	NL/A		
	- 10	N/A	- 60	N/A	- 110	N/A	- 180	N/A	- 300	N/A		
3800	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
	40	,,,	90	,,,	150	,,,	220	,,,,	390	.,,,,		
4000	-	N/A	-	N/A	-	N/A	-	N/A	-	N/A		
4000	70		130		190		280					
4200	-	N/A	-	N/A	-	N/A	-	N/A				
4400	110		170		230		330					
1100	-	N/A	-	N/A	-	N/A	-	N/A				
4600	140		210		280		440					
	-	N/A	-	N/A	-	N/A	-	N/A				
4800	180 -	N/A	250 -	N/A	330	N/A	590 -	N/A				
	- 210	IN/A	- 300	N/A	- 430	N/A	-	N/A				
5000	-	N/A	-	N/A	-	N/A						
	750	,,,		,		,						
5200	-	N/A										
5400												
5400												

Interior Spans 130mm slab

Snan (mm)				Charact	eristic I	mposed	Load O	(kPa)G	_{sdl} = 3kP	a		
Span (mm)		1.5		2.5		.5		5		.5	10).0
1800	0		0		0		0		0		0	
	- 0	-	- 0	-	-	-	- 0	-	-	-	-	-
2000	-	-	-	-	-	-	-	-	-	-	-	-
2200	0	-	0	-	0	-	0	-	0	-	0	-
2400	0	-	0	-	0	-	0	-	0	-	0	_
2600	0		0		0		0		0		20	
2800	0	-	0	-	0	-	0	-	10	-	70	-
3000	- 0	-	-	-	-	-	- 0	-	- 50	-	- 120	-
0000	-	-	-	-	-	-	-	-	-		-	-
3200	0 -	-	0	-	0	-	20 -	-	90 -	-	170 -	-
3400	0	_	0	_	10	_	60	_	140	_	220	_
3600	0		0		40		100		190		290	
3800	0	-	30	-	- 70	-	- 140	-	240	-	350	-
4000	20	-	60	-	- 110	-	- 180	-	300	-	-	-
4200	- 50	-	- 100	-	- 150	-	- 230	-	- 360	-		
4200	-	10	-	-	-	-	-	-	-			
4400	80 -	20	130 -	10	190 -	-	270 -	-	440 -	-		
4600	110 -	40	170	20	230	10	330	-	790			
4800	140	60	210	40	280	20	380					
5000	- 170	00	- 250	40	- 320	20	- 480	-				
0000	-	80	-	60	-	50	-	-				
5200	210 -	90	290 -	80	370 -	70	610 -	-				
5400	250	110	390 -	70	860							
5600		.10										

Interior Spans 150mm slab

nan (mm)		Characteristic Imposed Load Q _k (kPa)G _{sdl} = 3kPa													
Span (mm)	1	1.5		2.5		.5		5	1	/.5	1).0			
1800	0	_	0	_	0		0	_	0	_	0	_			
2000	0	_	0		0	_	0	_	0		0				
2200	0		0	-	0	_	0	_	0	_	0	-			
2400	0	-	0	-	0	-	0	-	0	-	0	-			
2600	0		0		0		0		0	_	0	_			
2800	0	-	0	-	0	-	0	-	0	-	20	-			
3000	0		0		0		0		10		60	_			
3200	0	-	0	-	0	-	0	-	40	-	100	-			
3400	0	_	0	-	0	_	10	_	80	_	150	_			
3600	0	_	0		0	_	40	_	120	_	200				
3800	0		0		30		80	_	160		250				
4000	0	-	20	-	60	-	110	-	210	_	310	-			
4200	10 -	-	50 -	-	90	_	150	-	260	_	370	-			
4400	30 -	-	80	-	120 -	-	190 -	-	310 -	_	430	-			
4600	60		110		160 -		240		370						
4800	90 -	10	140 -	-	200	-	280	-	420	-					
5000	120 -	30	180	10	240 -		330	-	490	-					
5200	150 -	40	210	30	280 -	-	380 -	-	570 -	-					
5400	180 -	60	250 -	40	320 -	20	430 -	-							
5600	220 -	80	290 -	60	370 -	30	490 -	-							
5800	250 -	100	330 -	80	420 -	50	560 -	10							
6000	290 -	120	380	100	570 -	-	1240	_							

Interior Spans 175mm slab

Concer (march)			Characteristic Imposed Load O_{k} (kPa) G_{sol} = 3kPa											
Span (mm)	1	I.5		2.5		.5		5		/.5	10).0		
2000	0	-	0 -	-	0 -	-	0	-	0 -	-	0 -	-		
2200	0	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-		
2400	0	-	0 -		0 -	-	0 -		0		0	-		
2600	0	-	0 -		0 -	-	0 -		0 -	-	0 -	-		
2800	0	-	0 -		0 -	-	0 -		0 -	-	0 -	-		
3000	0	-	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-		
3200	0		0 -	-	0 -	-	0 -		0 -	-	50 -	-		
3400	0	-	0 -	-	0 -	-	0 -	-	30 -	-	80 -	-		
3600	0	-	0 -	-	0 -	-	0 -		60 -	-	130 -	-		
3800	0	-	0 -	-	0 -	-	30 -	-	100 -	-	170 -	-		
4000	0 -	-	0 -	-	20 -	-	60 -	-	140 -	-	220	-		
4200	0	-	10 -	-	40 -	-	90 -	-	180 -	-	260 -	-		
4400	0 -	-	40 -	-	70 -	-	130 -	-	220 -	-	320 -	-		
4600	20 -	-	60 -	-	100 -	-	160 -	-	270 -	-	370 -	-		
4800	50 -	-	90 -	-	140 -	-	200 -	-	310 -	-	430 -	-		
5000	70 -	-	120 -	-	170 -	-	240 -	-	370 -	-	490 -	-		
5200	100 -	10	150 -	-	200 -	-	280 -	-	420 -	-	560 -	-		
5400	130 -	20	180 -	-	240 -	-	330 -	-	470 -	-				
5600	160 -	30	220 -	-	280 -	-	370 -	-	530 -	-				
5800	190 -	40	250 -	20	320	-	420 -	-	590 -	-				
6000	220 -	60	290 -	30	360 -	10	470 -	-	660 -	-				

Interior Spans 200mm slab

Snon (mm)	Characteristic Imposed Load \mathbf{Q}_{k} (kPa) \mathbf{G}_{sdl} = 3kPa											
Span (mm)	1	.5		.5		.5		5		.5	10).0
2000	0 -	-	0 -	-	0 -	-	0	-	0 -	-	0 -	-
2200	0 -	-	0	-	0 -	-	0	-	0 -	-	0 -	-
2400	0		0	_	0	_	0	-	0	_	0	
2600	0	-	0	_	0	_	0	-	0	_	0	_
2800	0	-	0	_	0	_	0		0	_	0	_
3000	0	_	0	_	0	_	0		0	_	0	_
3200	0		0		0		0		0		10	
3400	0	_	0		0		0		0	_	40	_
3600	0		0		0		0		30		80	
3800	0		0		0		0		60		110	
4000	0		0		0		30		90		150	
4200	0	-	0	-	10	-	50	-	130	-	200	-
4400	0		10	-	40	-	80	-	160		240	
4600	0	-	30	-	60	-	120	-	200	-	290	-
4800	20		60	-	90	-	150	-	240		340	
5000	40		80		120		180		290		390	
5200	- 70 -		- 110 -	-	- 150 -	-	- 220 -	-	- 330 -	-	- 440 -	-
5400	90	-	140	-	180	-	260	-	380	-	500	-
5600	- 120 -		- 170 -	-	- 220	-	- 300 -	-	- 430		- 560	
5800	140	-	200	-	250	-	340	-	- 480	-	- 620	-
6000	- 170 -	20 30	- 230	-	- 290 -	-	- 380 -	-	- 530 -	-	- 690 -	-

Interior Spans 250mm slab

Snon (mm)		Characteristic Imposed Load O_k (kPa) G_{sd} = 3kPa													
Span (mm)	,	1.5		5	3.			5		/.5	10).0			
2000	0 -	-	0 -	-	0	-	0 -	-	0 -	-	0 -	-			
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-			
2400	0		0		0		0		0		0				
2600	0	-	0	-	0	-	0	-	0	_	0	_			
2800	0	-	0	-	0		0	-	0	-	0				
3000	0	-	0	-	0	_	0	-	0	_	0	_			
3200	0	-	0	-	0	_	0	-	0	_	0				
3400	0	-	0	-	0	-	0	-	0	-	0	-			
3600	0	_	0	_	0	_	0	-	0	_	20	_			
3800	0	_	0		0	_	0		0	_	50	_			
4000	0		0		0		0		30		80				
4200	0	_	0		0	_	0		60	_	110	_			
4400	0		0		0	_	30 -		90	_	150				
4600	0	_	0		10	_	50		120	_	180				
4800	0		10	_	40	_	80	_	150		220	_			
5000	0		30	_	60		110		- 190		260	-			
5200	20		50	-	90	_	- 140	-	220	-	310	_			
5400	40	-	80	_	110	_	- 170 -	_	260		350	-			
5600	- 70 -	-	- 100		- 140	-	200	-	- 300	-	- 400 -				
5800	90	-	130	-	170	-	230	-	340	-	450	-			
6000	- 110 -	-	- 160 -	-	- 200 -	-	- 270 -		- 380 -	-	- 500	-			

6.8 End span tables: $G_{sdl} = 3kPa$

END Spans 110mm slab

C				Char	acteristi	c Imposed	Load Q _k	(kPa)G _{sdl} =	3kPa			
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2000	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2200	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	20 -	N/A
2400	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	20 -	N/A	80 -	N/A
2600	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	70 -	N/A	140 -	N/A
2800	0 -	N/A	0 -	N/A	0 -	N/A	40 -	N/A	120 -	N/A	200 -	N/A
3000	0 -	N/A	0 -	N/A	30 -	N/A	90 -	N/A	180 -	N/A		
3200	0 -	N/A	30 -	N/A	70 -	N/A	140 10	N/A	240 40	N/A		
3400	30 10	N/A	70 30	N/A	120 30	N/A	190 50	N/A	670 -	N/A		
3600	60 50	N/A	110 70	N/A	160 80	N/A	520 -	N/A				
3800	580 -	N/A										
4000												

END Spans 120mm slab

Creater (march)				Char	acteristi	c Imposed	Load Q _k	(kPa)G _{sdl} =	3kPa			
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
1800	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2000	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2200	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A
2400	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	40 -	N/A
2600	0 -	N/A	0 -	N/A	0 -	N/A	0 -	N/A	30 -	N/A	90 -	N/A
2800	0 -	N/A	0 -	N/A	0 -	N/A	10 -	N/A	80 -	N/A	150 -	N/A
3000	0 -	N/A	0 -	N/A	10 -	N/A	50 -	N/A	130 -	N/A	210 -	N/A
3200	0 -	N/A	10 -	N/A	40 -	N/A	100 -	N/A	190 -	N/A		
3400	0 -	N/A	40 -	N/A	80 -	N/A	140 10	N/A	250 30	N/A		
3600	30 10	N/A	80 20	N/A	120 30	N/A	190 40	N/A	310 70	N/A		
3800	60 40	N/A	110 60	N/A	170 60	N/A	240 80	N/A				
4000	100 80	N/A	480 -	N/A								
4200												

0		Characteristic Imposed Load O_k (kPa) G_{sd1} = 3kPa													
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0			
1800	0	-	0	-	0 -	-	0 -		0 -	-	0 -	-			
2000	0 -	-	0 -	-	0 -	-	0 -		0 -	-	0 -	-			
2200	0	-	0 -		0 -		0		0 -	-	0 -				
2400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-			
2600	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-	60 -	20			
2800	0 -	-	0 -	-	0 -	-	0 -	10	50 -	30	110 -	50			
3000	0 -	-	0 -	10	0 -	30	30 -	50	100 -	70	170 -	90			
3200	0 -	30	0 -	50	20 -	70	60 -	80	140 -	110	230	130			
3400	0 -	70	20 -	90	50 -	100	110 -	110	200 -	140	290 20	170			
3600	10 -	120	50 -	130	90 -	140	150 10	160	250 30	190					
3800	40 10	150	80 20	170	130 30	180	200 40	200	310 70	240					
4000	70 40	190	120 50	200	170 60	220	250 70	240	520 50	230					
4200	100 70	230	160 80	250	450 -	160									
4400	1090 -	30													
4600															

END Spans 130mm slab

0				Char	acteristic	c Imposed	Load Q _k (kPa)G _{sdl} =	3kPa			
Span (mm)		1.5	:	2.5		3.5		5		7.5	1	0.0
1800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
2200	0 -		0		0 -		0 -		0 -	-	0 -	
2400	0 -	-	0 -		0 -		0 -		0 -		0 -	-
2600	0 -		0 -	-	0 -		0 -		0 -	-	10 -	-
2800	0 -	-	0 -	-	0 -		0 -	-	10 -	-	50 -	10
3000	0 -	-	0 -	-	0 -		0 -	-	40 -	20	100 -	30
3200	0 -	-	0 -		0 -	10	20 -	30	80 -	50	150 -	60
3400	0 -	10	0 -	30	10 -	50	50 -	60	130 -	70	200 -	90
3600	0 -	50	10 -	70	40 -	80	90 -	90	170 -	110	260 -	130
3800	0 -	90	40 -	100	80 -	100	130 -	120	220 10	140	320 20	160
4000	30 -	120	70 -	130	110 10	140	170 20	150	280 30	180	390 50	200
4200	60 20	150	100 30	160	150 30	170	220 40	190	330 70	220		
4400	90 50	180	140 50	190	190 60	200	270 70	220	400 90	250		
4600	120 70	220	180 80	230	230 90	240	350 90	250	1350 -	120		
4800	260 60	200	670 -	90	1140 -	70						
5000												

Interior Spans 150mm slab

Cron (mm)	Characteristic Imposed Load Q _k (kPa)G _{sdl} = 3kPa												
Span (mm)	1	1.5		2.5	:	3.5		5		7.5	1	0.0	
2000	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	
2400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	
2600	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	
2800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	10 -		
3000	0 -		0 -	-	0 -	-	0 -		0 -	-	50 -	-	
3200	0 -	-	0 -		0 -		0 -	-	30 -	10	90 -	20	
3400	0 -		0 -		0 -	-	10 -	20	70 -	30	130 -	40	
3600	0 -	-	0 -	20	0 -	40	40 -	40	110 -	60	180 -	70	
3800	0 -	30	0 -	50	30 -	60	80 -	70	150 -	80	230 -	100	
4000	0 -	70	30 -	80	60 -	80	110 -	90	200 -	110	280 -	130	
4200	20 -	100	60 -	100	90 -	110	150 -	120	240 20	140	340 30	160	
4400	50 10	120	90 10	130	130 20	140	190 20	150	290 40	170	400 50	190	
4600	80 30	150	120 30	160	160 40	170	230 50	180	350 60	200	460 80	230	
4800	110 50	180	150 60	190	200 60	200	280 70	210	400 90	240			
5000	140 70	210	190 80	220	240 90	230	320 100	240	460 120	270			
5200	170 100	240	230 100	250	280 110	260	370 130	280	1280 10	150			
5400	250 100	250	610 10	140	1020 -	100							
5600	1470 -	80											
5800													

END Spans 175mm slab

Concer (march)	Characteristic Imposed Load O_k (kPa) G_{sdl} = 3kPa												
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0	
2000	0 -	-	0 -	-	0	-	0 -	-	0 -	-	0 -	-	
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	
2400	0 -	-	0 -	-	0		0 -	-	0 -	-	0 -		
2600	0 -	-	0 -	-	0 -		0 -		0 -	-	0 -		
2800	0 -		0 -	-	0 -		0 -	-	0 -		0 -		
3000	0 -	-	0 -	-	0 -		0	-	0 -	-	10 -	-	
3200	0 -		0 -	-	0		0 -	-	0 -		40 -		
3400	0 -	-	0 -	-	0 -	-	0	-	30 -	10	80	20	
3600	0 -		0 -	-	0 -		10 -	20	70 -	30	120 -	40	
3800	0 -	-	0 -	20	0 -	30	40 -	40	100	50	170 -	60	
4000	0 -	30	0 -	50	30 -	50	70 -	60	140 -	70	210 -	80	
4200	0 -	60	30 -	70	60 -	70	100 -	80	180 -	100	260 -	110	
4400	20 -	90	50 -	90	90 -	100	140 -	100	220 10	120	310 20	140	
4600	50 -	110	80 10	120	120 10	120	180 10	130	270 30	150	370 40	160	
4800	70 20	130	110 30	140	150 30	150	210 40	160	320 50	170	420 60	200	
5000	100 40	160	140 50	170	190 50	170	250 60	190	370 70	200	480 90	230	
5200	130 60	180	180 60	190	220 70	200	300 80	210	420 100	240	550 110	260	
5400	160 80	210	210 90	220	260 90	230	340 100	240	470 120	270	610 140	300	
5600	190 110	240	250 110	250	300 120	260	390 130	270	530 150	300			
5800	220 130	270	280 140	280	340 140	290	530 120	270	1410 40	180			
6000	380 100	250	730 30	150	1110	130	1780 20	160					

Interior Spans 200mm slab

END Spans 250mm slab

Cnon (mm)				Cha	racteristi	: Imposed	Load Q _k	(kPa)G _{sdl} =	3kPa			
Span (mm)		1.5		2.5		3.5		5		7.5	1	0.0
2000	0 -	-	0 -	-	0	-	0	-	0 -	-	0	-
2200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-
2600	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
2800	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
3000	0 -	-	0 -		0 -		0 -		0 -	-	0 -	
3200	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	0 -	
3400	0 -	-	0 -	-	0 -	-	0 -	-	0 -	-	20 -	
3600	0 -	-	0 -	-	0 -	-	0 -	-	10 -	-	50 -	-
3800	0 -	-	0 -	-	0 -	-	0 -	-	40 -	10	90 -	20
4000	0 -	-	0 -	-	0 -	10	20 -	20	70 -	30	120 -	40
4200	0 -	10	0 -	30	10 -	40	40 -	40	100 -	50	160 -	60
4400	0 -	40	10 -	50	30 -	60	70 -	60	140 -	70	200 -	80
4600	10 -	60	30 -	70	60 -	70	100 -	80	170 -	90	250	100
4800	30 -	80	60 -	90	90 -	90	140 -	100	210 10	110	290 10	120
5000	50 -	110	80 10	110	120 10	110	170 10	120	250 20	130	340 30	140
5200	80 20	120	110 20	130	150 30	130	200 30	140	290 40	160	390 50	170
5400	100 40	150	140 40	150	180 40	160	240 50	170	340 60	180	440 70	200
5600	130 60	170	170 60	180	210 60	180	280 70	190	380 80	210	490 90	220
5800	160 70	190	200 80	200	250 80	210	320 90	210	430 100	230	550 120	250
6000	180 100	220	230 100	230	280 100	230	360 110	240	480 130	260	610 140	280

7. CONSTRUCTION AND DETAILING

The construction of LYSAGHT[®] BONDEK[®] II composite slabs follows simple, familiar and widely-accepted building practice. Workers can readily acquire the skills necessary to install BONDEK[®] II formwork and finish the composite slab. Construction workers will normally be supplied with fully detailed drawings showing the direction of the ribs, other reinforcement and all supporting details.

7.1 Safety

BONDEK[®] II is available in long lengths, so large areas can be quickly and easily covered to form a safe working platform during construction. One level of formwork gives immediate protection from the weather, and safety to people working on the floor below. The minimal propping requirements provide a relatively open area to the floor below.

The bold embossments along the top of the ribs of BONDEK[®]II enhance safety by reducing the likelihood of workers slipping.

It is commonsense to work safely, protecting yourself and workmates from accidents on the site. Safety includes the practices you use; as well as personal protection of eyes and skin from sunburn, and hearing from noise. For personal safety, and to protect the surface finish of BONDEK® II, wear clean dry gloves. Don't slide sheets over rough surfaces or over each other. Always carry tools, don't drag them.

Occupational health and safety laws enforce safe working conditions in most locations. Laws in every state require you to have fall protection which includes safety mesh, personal harnesses and perimeter guardrails where they are appropriate. We recommend that you adhere strictly to all laws that apply to your site.

BONDEK[®] II is capable of withstanding temporary construction loads including the mass of workmen, equipment and materials all in accordance with SS EN 1999-1-6:2009. However, it is good construction practice to ensure protection from concentrated loads, such as barrows, by use of some means such as planks and/or boards.

7.2 Care and storage before installation

BONDEK[®] II is delivered in strapped bundles. If not required for immediate use, stack sheets or bundles neatly and clear of the ground, on a slight slope to allow drainage of water. If left in the open, protect with waterproof covers.

7.3 Installation of BONDEK® II sheeting on-site

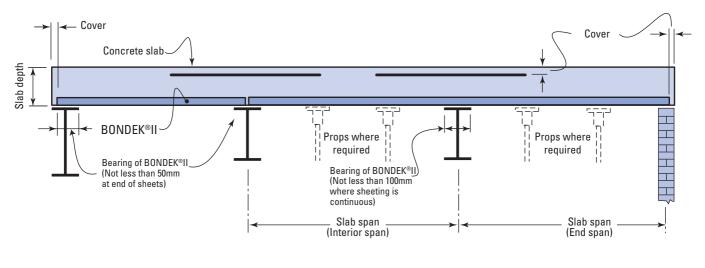


Figure 7.1 BONDEK[®] II Installation guidelines

7.3.1 Propping

Depending on the span of a BONDEK[®] II slab, temporary propping may be needed between the slab supports to prevent excessive deflections or collapse of the formwork. A typical diagram for the installation of BONDEK[®] II is depicted in Figure 7.1.

BONDEK[®] II formwork is normally placed directly on prepared propping. Props shall stay in place during the laying of BONDEK[®] II formwork, the placement of the concrete, and until the concrete has reached the strength of 20MPa.

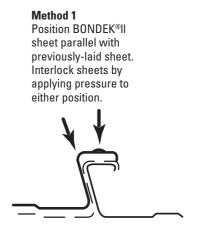
Propping generally consists of substantial timber or steel bearers supported by vertical props. The bearers shall be continuous across the full width of BONDEK[®] II formwork.

Propping shall be adequate to support construction loads and the mass of wet concrete. The number of props you need for given spans is shown in our tables.

7.3.2 Laying

BONDEK shall be laid with the sheeting ribs aligned in the direction of the designed spans. Other details include the following:

- The slab supports shall be prepared for bearing and slip joints as required.
- Lay BONDEK[®] II sheets continuously over each slab span without any intermediate splicing or jointing.
- Lay BONDEK[®] II sheets end to end. Centralise the joint at the slab supports. Where jointing material is required the sheets may be butted against the jointing material.
- Support BONDEK[®] II sheets across their full width at the slab support lines and at the propping support lines.
- For the supports to carry the wet concrete and construction loads, the minimum bearing is 50mm for ends of BONDEK[®] II sheets, and 100 mm for intermediate supports over which the sheeting is continuous. It may be reduced to 25mm for concrete band beams as shown in Figure 7.5.
- In exposed applications, treat the end and edges of the BONDEK[®] II sheets with a suitable edge treatment to prevent entry of moisture.


7.3.3 Interlocking of sheets

Overlapping ribs of BONDEK[®] II sheeting are interlocked. Either of two methods can be used in most situations, though variations may also work.

In the first method, lay adjacent sheets loosely in place. Place the female lap rib overlapping the male lap rib of the previous sheet and apply foot pressure, or a light kick, to the female lap rib (Figure 7.2).

In the second method, offer a new sheet at an angle to one previously laid, and then simply lower it down, through an arc (see Figure 7.2).

If sheets don't interlock neatly (perhaps due to some damage or distortion from site handling or construction practices) use screws to pull the laps together tightly (see Section 7.3.9, Fastening side-lap joints).

Method 2 Position BONDEK®II sheet at an angle. Interlock sheets by lowering sheet through an arc.

Figure 7.2 Two methods of interlocking two adjacent BONDEK® II sheets

7.3.4 Securing the sheeting platform

BONDEK® II shall be securely fixed to supporting structures using:

- weights;
- · screws or nails into the propping bearers; or
- Spot welding

Take care if you use penetrating fasteners (such as screws and nails) because they can make removal of the props difficult, and perhaps result in damage to the BONDEK[®] II.

7.3.5 Installing BONDEK®II on steel frames

BONDEK® II may be installed directly on erected structural steelwork.

General fastening of BONDEK® II

To provide uplift resistance or lateral restraint, the sheeting may be fixed to the structural steel using spot welds, or fasteners such as drive nails or self-drilling screws.

At a movement joint, the sheeting is not continuous over the support. If one sheet is fastened at the joint, the other is not.

Place the fixings (fasteners and spot welds) in the flat areas of the pans adjacent to the ribs or between the flutes. The frequency of fixings depends on wind or seismic conditions and good building practice.

One fixing system is as follows.

- At the end of sheets: use a fixing at every rib (Figure 7.3).
- At each intermediate slab support over which the sheeting is continuous: use a fixing at the ribs on both edges (Figure 7.3).
- Fix BONDEK[®] II with drive nails, self-drilling screws or spot welds.
- Drive nails should be powder-activated, steel nails 4mm nominal diameter, suitable for structural steel of 4mm thickness or greater.
- For structural steel up to 12mm thick, use 12-24 x 38mm self-drilling self-tapping hexagon head screws.

- For structural steel over 12mm thick, pre-drill and use 12-24 x16mm hexagon head screws.
- Spot welds should be 12mm minimum diameter. Use 3.25mm diameter cellulose, iron powder AC/DC high penetration electrodes or equivalent. Surfaces to be welded shall be free of loose material and foreign matter. Where the BONDEK[®] II soffit or the structural steelwork has a prepainted surface, securing methods other than welding may be more appropriate. Take suitable safety precautions against fumes during welding zinc coated products.

Fastening composite beams

In projects of composite beam construction the BONDEK[®]II sheeting shall be fastened to supports. This provision requires a fixing in each pan at each composite beam.

Stud welding through the sheet has been considered a suitable securing method for the sheeting in a composite beam; however some preliminary fixing by one of the methods mentioned above is necessary to secure the sheeting prior to the stud welding. Some relevant welding requirements are:

- Zinc coating on sheeting not to exceed Z450;
- Mating surfaces of steel beam and sheeting to be cleaned of scale, rust, moisture, paint, overspray, primer, sand, mud or other contamination that would prevent direct contact between the parent material and the BONDEK[®] II;
- Welding shall be done in dry conditions by a certified welder;
- For pre-painted BONDEK[®] II sheets, special welding procedures may be necessary; and
- For sheets transverse to beams, stud welding shall be between pan flutes to ensure there is no gap between mating surfaces.

NOTE: Welding may void warranty as well as damaging steel support.

 $\nabla \downarrow$ Fixing at end of sheets

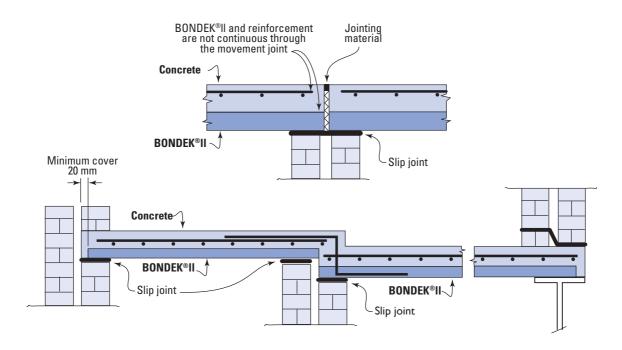

Ω Fixing at intermediate slab supports over which the sheeting is continuous

Figure 7.3 Positions for fixing BONDEK®II sheet to steel framing

7.3.6 Installing BONDEK on brick supports

Brick walls are usually considered to be brittle and liable to crack from imposed horizontal loads. Thermal expansion and contraction, long-term shrinkage, creep effects and flexural deflection of concrete slabs may be sufficient to causesuch cracking.

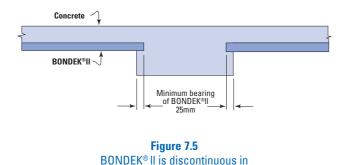
To prevent the cracking, BONDEK[®] II slabs are not usually installed directly on brick supports, although this is not always the case in earthquake construction.

Figure 7.4 Typical movement and slip joints

Slip joints

Generally, a slip joint is provided between BONDEK[®] II and masonry supports (Figure 7.4).

- No fasteners are used between BONDEK[®] II and its support at a slip joint.
- Slip joint material may be placed directly in contact with the cleaned surface of steelwork.
- The top course of masonry should be level, or finished with a levelled bed of mortar to provide an even bearing surface. Lay the top courses of bricks with the frogs facing down.
- The width of a slip joint should not extend beyond the face of the slab support.


 The slip joint material shall have adequate compressive strength to avoid it being compressed into irregularities of the mating surfaces and thus becoming a rigid joint.

Slip joint material shall allow movement to occur, usually by allowing flow under pressure or temperature, however it shall not run or solidify. Generically, the materials are a non-rotting, synthetic carrier impregnated with a neutral synthetic or petroleum-based material. Typical slip joint material is Alcor (a bitumen coated aluminium membrane).

NOTE: Earthquake zones will require special detailing

7.3.7 Installing BONDEK®II on concrete-frames

When used in concrete-frame construction, the BONDEK[®] II sheeting is discontinuous through the supports (Figure 7.5).

concrete-frame construction

7.3.9 Fastening side-lap joints

If BONDEK[®] II sheeting has been distorted in transport, storage or erection, side-lap joints may need fastening to maintain a stable platform during construction, to minimise concrete seepage during pouring, and to gain a good visual quality for exposed soffits (Figure 7.6).

Figure 7.6 Fixing at a side lap

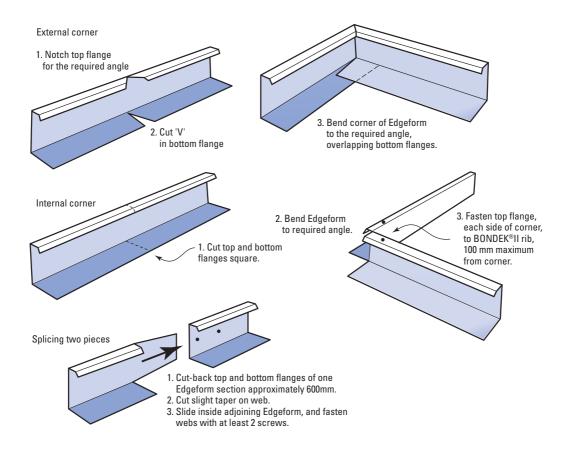
7.3.8 Provision of construction and movement joints

Joints used between BONDEK[®] II slabs generally follow accepted construction practices. Construction joints are included between slabs for the convenience of construction. Movement joints allow relative movement between adjoining slabs. The joints may be transverse to, or parallel with, the span of the BONDEK[®] II slab. BONDEK[®] II sheeting. (Figure 7.4).

Joints typically use a non-rotting, synthetic carrier impregnated with a neutral synthetic or petroleum based material like Malthoid (a bitumen impregnated fibre-reinforced membrane). Sometimes a sealant is used in the top of the joint for water tightness.

The BONDEK[®] II sheeting and any slab reinforcement are not continuous through a joint.

Design engineers generally detail the location and spacing of joints because joints effect the design of a slab.


7.3.10 Cutting and fitting Edgeform

Edgeform is a simple C-shaped section that simplifies the installation of most BONDEK[®] II slabs. It is easily fastened to the BONDEK[®] II sheeting, neatly retaining the concrete and providing a smooth top edge for quick and accurate screeding. We make it to suit any slab thickness.

Edgeform is easily spliced and bent to form internal and external corners of any angle and shall be fitted and fully fastened as the sheets are installed. There are various methods of forming corners and splices. Some of these methods are shown in Figures 7.7 and 7.8.

Fasten Edgeform to the underside of unsupported BONDEK® II panels every 300 mm. The top flange of Edgeform shall be tied to the ribs every 600mm (or less if aesthetics are required) with straps formed on-site using builder's strapping 25mm x 1.0mm (Figures 7.7 and 7.8). Use 10–16 x 16mm self-drilling screws.

Make sure that the zinc coating on Edgeform matches the corrosion protection requirements of your job.

Figure 7.7 Fabrication of formwork is easy with Edgeform

Fastening bottom flange of Edgeform

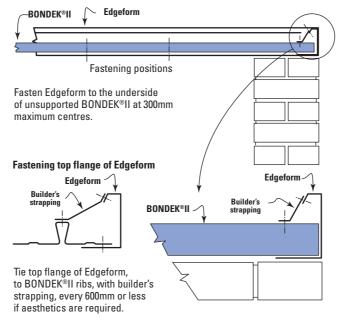


Figure 7.8 Typical fastening of Edgeform to BONDEK® II

7.3.11 Cutting of sheeting

It is easy to cut LYSAGHT[®] BONDEK[®] II sheets to fit. Use a power saw fitted with an abrasive disc or metal cutting blade. Initially lay the sheet with its ribs down, cut through the pans and part-through the ribs, then turn over and finish by cutting the tops of the ribs.

7.3.12 Items embedded in slabs

Generally use items in a manner which complies with Eurocodes. Included are pipes and conduits, sleeves, inserts, holding-down bolts, chairs and other supports, plastic strips for plasterboard attachment, contraction joint material and many more.

Table 7.1Location of items within the slab (Figure 7.9)

ltems	Location
	Between the ribs; and
Pipes parallel with the ribs and other items	 below the top-facereinforcements; and
	 above the pans and flutes of the BONDEK[®] II
Pipes across the ribs	In the space between the top-face and bottom-face reinforcements (if there is no bottom-face reinforcement, above the top of the ribs)

Minimise the quantity and size of holes through BONDEK[®] II sheeting, by hanging services from the underside of BONDEK[®] II using accessories such as Bon-nut and Bonwedge.

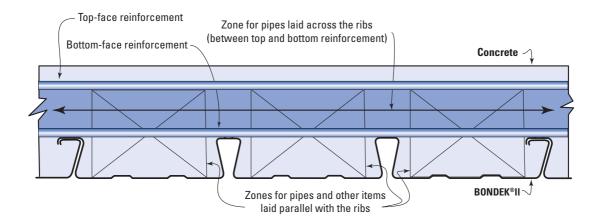


Figure 7.9 Zones for the location of holes through BONDEK® II

7.3.13 Holes in sheeting

BONDEK[®]II acts as longitudinal tensile reinforcement similarly to conventional bar or fabric reinforcement does in concrete slabs. Consequently, holes in BONDEK[®]II sheets, to accommodate pipes and ducts, reduce the effective area of the steel sheeting and can adversely effect the performance of a slab.

Some guidelines for holes are: (Figure 7.11)

- Place holes in the central pan of any sheet, with a minimum edge distance of 15mm from the rib gap.
- Holes should be round, with a maximum diameter of 150mm.
- For slabs designed as a continuous slab: space holes from an interior support of the slab no less than one tenth of a clear span.

NOTE: In the event of BONDEK[®] II ribs being cut for larger penetrations, sufficient reinforcing steel and detailing is required to replace lost BONDEK[®] II ribs. Attention to propping at these locations is essential.

7.3.14 Sealing

Seepage of water or fine concrete slurry can be minimised by following common construction practices. Generally gaps are sealed with waterproof tape, or Bonfill (Figure 7.10) or by sandwiching contraction joint material between the abutting ends of BONDEK[®] II sheet. If there is a sizeable gap you may have to support the waterproof tape.

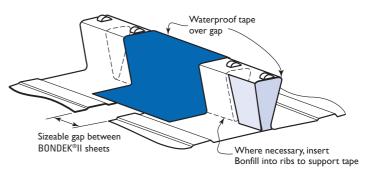


Figure 7.10 Typical sealing of BONDEK® II Use waterproof tape to seal joints in BONDEK® II sheets

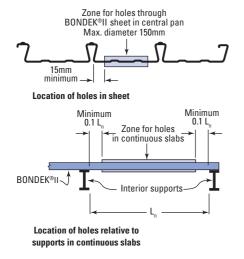
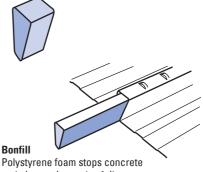



Figure 7.11 Penetration through BONDEK® II sheets.

End plug Polyethylene end plug stops concrete and air from entering end of BONDEK®II ribs.

Polystyrene foam stops concrete and air entering ends of ribs. Stock length: 1200mm Required: 300mm per sheet of BONDEK®II

7.3.15 Inspection

BONDEK® II sheeting acts as longitudinal tensile reinforcement.

The condition of sheeting should be inspected before concrete is poured.

We recommend regular qualified inspection during the installation, to be sure that the sheeting is installed in accordance with this publication and good building practice.

7.4 Positioning and support of reinforcement

Reinforcement in slabs carries and distributes the design loads and to control cracking. Reinforcement is generally described as transverse and longitudinal in relation to span, but other reinforcement required for trimming may be positioned in other orientations. Figure 7.12 shows a typical cross-section of a BONDEK[®] II composite slab and associated terms. Reinforcement shall be properly positioned, lapped where necessary to ensure continuity, and tied to prevent displacement during construction.

To ensure the specified minimum concrete cover, the uppermost layer of reinforcement shall be positioned and tied to prevent displacement during construction (Section 4.4 of this Manual).

Splicing of conventional reinforcement shall be in accordance with SS EN 1992-1-1:2008 Section 8 (Splicing of reinforcement).

Where fabric is used in thin slabs, or where fabric is used to act as both longitudinal and transverse reinforcement, pay particular attention the required minimum concrete cover and the required design reinforcement depth at the splices-splice bars are a prudent addition.

Always place chairs and spacers on pan areas. Depending upon the type of chair and its loading, it may be necessary to use plates under chairs to protect the BONDEK[®] II, particularly where the soffit will be exposed. Transverse reinforcement may be used for spacing or supporting longitudinal reinforcement. joint material and many more.

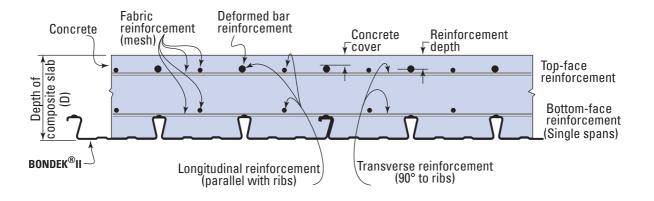


Figure 7.12 Typical cross section of a slab showing common terms.

7.4.1 Transverse reinforcement

Transverse reinforcement is placed at right-angles to the ribs of LYSAGHT® BONDEK® II. Deformed bar or fabric reinforcement may be used. In most applications the transverse reinforcement is for the control of cracks caused by shrinkage and temperature effects, and for locating longitudinal reinforcement.

For ease of construction, reinforcement for control of cracking due to shrinkage and temperature effects is usually fabric reinforcement. Design tables presented in this manual can be used if mesh is located as shown in Figure 7.12

7.4.2 Longitudinal reinforcement

Longitudinal reinforcement is positioned to carry design loads in the same direction as the ribs of LYSAGHT[®] BONDEK[®] II. Deformed bar or fabric reinforcement may be used.

Top-face longitudinal reinforcement is usually located over interior supports of the slab and extends into approximately a third of the adjoining spans.

Bottom-face longitudinal reinforcement is located between supports of the slab but, depending upon the detailing over the interior supports, it may be continuous, lapped, or discontinuous. Bottom-face longitudinal reinforcement may be placed on top of or below transverse reinforcement.

Location of top and bottom-face longitudinal reinforcement in elevated temperatures requires special design. (Refer Section 5 of this Manual)

7.4.3 Trimmers

Trimmers are used to distribute the design loads to the structural portion of the slab and/or to control cracking of the concrete at penetrations, fittings and re-entrant corners. Deformed bar or fabric reinforcement may be used.

Trimmers are sometimes laid at angles other than along or across the span, and generally located between the top and bottom layers of transverse and longitudinal reinforcement. Trimmers are generally fixed with ties to the top and bottom layers of reinforcement.

7.5 Concrete

7.5.1 Specification

The concrete is to have the compressive strength as specified in the project documentation and the materials for the concrete and the concrete manufacture should conform to SS EN 1992-1-1:2008, Section 3.

7.5.2 Concrete additives

Admixtures or concrete materials containing calcium chloride or other chloride salts shall not be used. Chemical admixtures including plasticisers may be used if they comply with Eurocodes.

7.5.3 Preparation of sheeting

Before concrete is placed, remove any accumulated debris, grease or any other substance to ensure a clean bond with the LYSAGHT® BONDEK® II sheeting. Remove ponded rainwater.

7.5.4 Construction joints

It is accepted building practice to provide construction joints where a concrete pour is to be stopped. Such discontinuity may occur as a result of a planned or unplanned termination of a pour. A pour may be terminated at the end of a day's work, because of bad weather or equipment failure. Where unplanned construction joints are made, the design engineer shall approve the position.

In certain applications, the addition of water stops may be required, such as in roof and balcony slabs where protection from corrosion of reinforcement and sheeting is necessary.

Construction joints transverse to the span of the LYSAGHT® BONDEK® II sheeting are normally located at the mid-third of a slab span and ideally over a line of propping. Locate longitudinal construction joints in the pan (Figure 7.13).

It may be necessary to locate joints at permanent supports where sheeting terminates. This is necessary to control formwork deflections since formwork span tables are worked out for uniformly distributed loads (UDL) applied on all formwork spans. Form construction joints with a vertical face - the easiest technique is to sandwich a continuous reinforcement between two boards.

Prior to recommencement of concreting, the construction joint shall be prepared to receive the new concrete, and the preparation method will depend upon the age and condition of the old concrete. Generally, thorough cleaning is required to remove loose material, to roughen the surface and to expose the course aggregate.

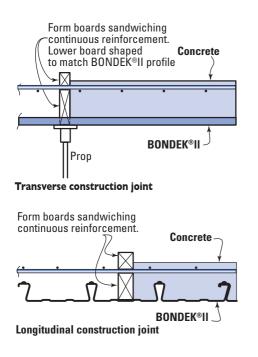


Figure 7.13 Typical construction joint

7.5.5 Placement of concrete

The requirements for the handling and placing of the concrete are covered in Eurocodes.

The concrete is placed between construction joints in a continuous operation so that new concrete is placed against plastic concrete to produce a monolithic mass. If the pouring has to be discontinued for any more than approximately one hour, depending on the temperature, a construction joint may be required.

Start pouring close to one end and spread concrete uniformly, preferably over two or more spans. It is good practice to avoid excessive heaping of concrete and heavy load concentrations. When concrete is transported by wheel barrows, the use of planks or boards is recommended. During pouring, the concrete should be thoroughly compacted, worked around ribs and reinforcement, and into corners of the edge forms by using a vibrating compactor. Ensure that the reinforcement remains correctly positioned so that the specified minimum concrete cover is achieved.

Unformed concrete surfaces are screeded and finished to achieve the specified surface texture, cover to reinforcement, depths, falls or other surface detailing.

Surfaces which will be exposed, such as Edgeform and exposed soffits, should be cleaned of concrete spills while still wet, to reduce subsequent work.

7.5.6 Curing

After placement, the concrete is cured by conventional methods, for example, by keeping the slab moist for at least seven days, by covering the surface with sand, building paper or polythene sheeting immediately after it has been moistened with a fine spray of water. Follow Eurocodes (Curing and protection of concrete) and good building practice. Be particularly careful when curing in very hot or very cold weather.

Until the concrete has cured, it is good practice to avoid concentrated loads such as barrows and passageways with heavy traffic.

7.5.7 Prop removal

Various factors affect the earliest time when the props may be removed and a slab is initially loaded.

7.6 Finishing

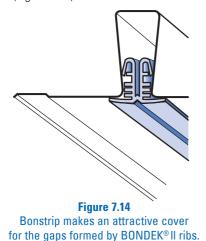
7.6.1 Soffit and edgeform finishes

For many applications, BONDEK[®] II gives an attractive appearance to the underside (or soffit) of a composite slab, and will provide a satisfactory ceiling - for example, in car parks, under-house storage and garages, industrial floors and the like. Similarly, edgeform will give a suitable edging. Additional finishes take minimal extra effort.

Where the BONDEK[®] II soffit is to be the ceiling, take care during construction to minimise propping marks (refer to Installation - Propping), and to provide a uniform surface at the side-laps (refer to Installation - Fastening side-lap joints).

Exposed surfaces of BONDEK[®] II soffit and edgeform may need cleaning and/or preparation for any following finishes. The cleaning preparations are shown in Table 7.2.

Table 7.2Preparation of soffits and edgeform


Prepainted soffit or edge	 Remove all protective plastic strips from rolled corners. Concrete seepage marks and dirt may be removed by washing with water. For stubborn stains, use a mild solution of pure soap or non-abrasive detergent in warm water. Grease or oil deposits may be removed by washing as described above. For stubborn deposits contact us for advice. Never use abrasive or solvent type cleaners (like turps, petrol orkerosene) on pre-painted steel.
Galvanished soffit or edge	 Light corrosion marks indicated by white to grey staining due to wet bundles may be removed with a kerosene rag. If this is unsatisfactory, then wire brushing may be necessary. Take care not to unnecessarily remove any of the zinc coating. If zinc coating is removed, a suitable paint system must be used. Grease or oil deposits may be removed with a kerosene rg. For stubborn deposits, use paint thinners. Concrete seepage marks and dirt may be removed by washing as described above.

7.6.2 Painting

Various painting systems are available for use with zinc coatings to provide a decorative finish and/or to provide an appropriate corrosion protection system.

The performance of a paint system is influenced by the quality of preparation and application - closely follow the paint manufacturer's instructions.

For painted soffits, it may be preferable to cover the gaps of the ribs prior to painting. Bonstrip snaps into the gaps of the ribs of the BONDEK[®] II sheeting and produces an attractive appearance (Figure 7.14).

The gap at the side-lap joint can be filled with a continuous bead of silicon sealant prior to painting.

NOTE: Paint manufacturers' approved applicators provide the performance warranty for overpainted products.

7.6.3 Plastering

Finishes such as vermiculite plaster can be applied directly to the underside of BONDEK[®] II with the open rib providing a positive key. With some products it may be necessary to treat the galvanised steel surface with an appropriate bonding agent prior to application.

Plaster-based finishes can be trowelled smooth, or sprayed on to give a textured surface. They can also be coloured to suit interior design requirements.

7.6.4 Addition of fire protective coating

Where a building is being refurbished, or there is a change of occupancy and floor use, you may need to increase the fire resistance of the BONDEK[®] II composite slabs. This may be achieved by the addition of a suitable fire-protection material to the underside of the slabs. The open ribs of BONDEK[®] II provide a positive key to keep the fire spray in position. Such work is beyond the scope of this manual.

7.7 Suspended ceilings and services

7.7.1 Plasterboard

A BONDEK® II soffit may be covered with plasterboard by fixing to battens or direct fixing using bonstrip.

Option 1

Steel ceiling battens can be fixed directly to the underside of the slab using powder-actuated fasteners. The plasterboard is then fixed to ceiling battens in the usual way (Figure 7.15).

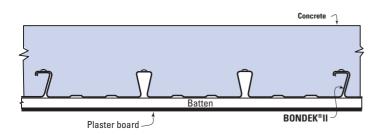
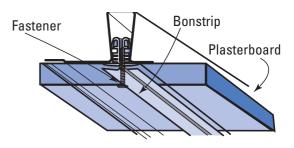



Figure 7.15 Fixing plasterboard to BONDEK® II. **Option 2**:

Direct fix to Bonstrip Plasterboard may also be screwed directly into Bonstrip using appropriate fasteners.

Figure 7.16

NOTE: With this detail attention to formwork, deflection limitations and service routes is critical.

7.7.2 Suspended ceiling

Ceilings are easily suspended from BONDEK[®] II slabs using M6 Bon-nut suspension nuts, or Bonwedge suspension brackets. Threaded rods or wire hangers are then used to support the ceiling. Alternatively, hangers may be attached to eyelet pins powder-driven into the underside of the slab, or to pigtail hangers inserted through pilot holes in the BONDEK[®] II sheeting before concreting (Figure 7.21).

7.7.3 Suspended services

Services such as fire sprinkler systems, piping and ducting are easily suspended from BONDEK®II slabs using Bon-nut suspension nuts. (Figure 7.21).

7.8 Fire stopping detailing

7.8.1 At reinforced block walls

When using BONDEK[®] II with reinforced block walls the bearing length is often reduced to 25mm absolute minimum to allow adequate bearing prior to core filling from the deck level and continuation of wall reinforcement. (An alternative is to provide holes through pans over every blockwork core.) The BONDEK[®] II sheets still require fixing to the support structure. To maintain the fire rating level (FRL) of the (often reinforced) blockwork, the Bonfill can be displaced relative to the end of the BONDEK[®] II sheets as shown in Fig 7.17 to maintain the minimum through wall FRL requirement.

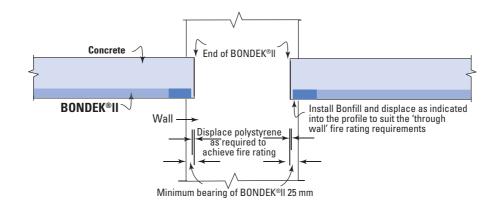


Figure 7.17 BONDEK® II fire detail at reinforced block walls

7.8.2 Fire collars

BONDEK[®] II with its flat pan profile allows easy integration of proprietary fire collars that maintain the fire rating level through service penetrations as shown in Fig 7.18. They are generally up to 150mm diameter and are installed between the composite BONDEK[®] II ribs. Fire collars are fixed pre-pour usually by the plumbing contractor with screws to the BONDEK[®] II pan which is cut out after the pour is complete with the fire collar cast in place.

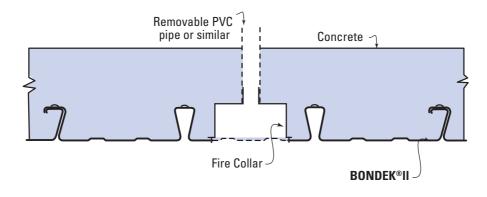


Figure 7.18 Proprietary fire collar fixed to BONDEK® II pan

7.9 BONDEK® II in post tensioned concrete-framed construction

7.9.1 BONDEK® II rib removal at PT anchor points or stressing pans

With post tensioned solutions dead and live anchor points can be located within slabs at a point over the BONDEK[®]II profile. To position bursting reinforcement or to install a stressing pan within a slab a short length of BONDEK[®]II rib is sometimes removed using a grinder or plasma cutter on site. This provides better end anchorage zone stress distribution to avoid stress concentrations between ribs. This zone where the rib is removed is sealed (usually with tape) before placing the post tensioning end termination component. (Refer to Sealing, Section 7.3.14 and Figure 7.10).

7.9.2 Positioning of PT duct/cables in transverse direction

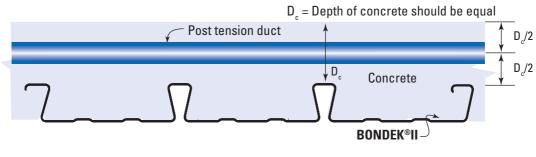


Figure 7.19 Positioning of PT duct/cables in transverse direction

NOTES:

- 1. Position transverse duct/cables equidistant between top of BONDEK® II ribs and the surface of the concrete.
- 2. Equidistant location of duct/cables is necessary at BONDEK[®] II open ribs and side lap joint locations to ensure uniform compression stress across composite slab depth.

7.10 Architectural matters

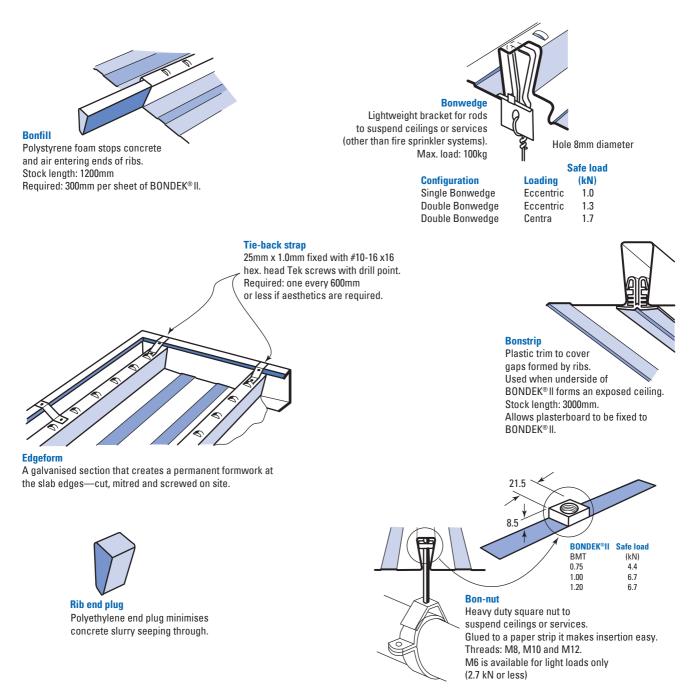
Where structural decking soffits are visible and in particular where pre-painted finishes are employed, special care must be taken when lifting, handling, storing on-site and laying this product. The underside is intended as an aesthetic feature of the installed product. For this reason, the following architectural aims need to be considered.

Rib Alignment: Or "registration" of ribs between adjacent spans. Be careful to align the BONDEK[®] II ribs where sheets meet over supporting beams so that when viewing the exposed product from the underside, the product presents uniform shadow lines between bays. Ensure that the sheets are laid in accordance with Section 7.3.2 end to end (or butting against jointing material) and have the ribs aligned.

Fixing: No activities should be carried out on the topside of the installed BONDEK[®] II that might have adverse affects on the bottom side, such as puddle welding or penetrating the deck with fasteners in locations where they will be visible from the underside. Securing the decking plan to the supporting structure as recommended in Section 7.3 will prevent movement of sheets and reduce slurry leakage under the sheets during pouring and vibration of the concrete.

Slurry leakages: During the concrete pour ensure there is no concrete leakage which might cause unsightly stains on the underside paint finish. Refer to Section 7.3.14 regarding sealing at ends and laps and Section 7.3.9 regarding side lap fixing. Foam tape should be utilised under the deck edges over the supporting structure (particularly in concrete frames) to minimise leakage under the sheets.

Handling: Section 7.2 covers care and storage before installation. With architectural finishes applied to the decking soffit, special care is still required to minimise scratching and marking prior to placement. (i.e. during transport, site storage and handling of bundles and placement of individual sheets).


Visual quality:

a) Prop marking - Care should be taken to minimise prop marking through maintaining the quality of temporary propping support surfaces and adopting deflection ratio limitations in accordance with Section 3.2. Care in controlling construction live loads such as workman, mounding of concrete and stacked materials will also improve the visual quality.

b) Side lap - Refer section 7.3.9 where visual quality of exposed soffits can be enhanced with side lap fixing.

Finishing: Section 7.3.14 covers gap sealing of the decking profile and jointing details. Utilising waterproof tape, Bonfill, and end plugs will control seepage of water or fine concrete slurry.

7.11 Accessories

8. REFERENCES

SS EN 1990 : 2008 Singapore Standard Eurocode – basis of structural design

NA to SS EN 1990 : 2008 Singapore National Annex to Eurocode - basis of structural design

SS EN 1991-1-1:2008 Singapore Standard Eurocode 1: Actions on structures, Part 1-1 : General actions - Densities, self-weight, imposed loads for buildings

SS EN 1991-1-2 : 2008 Singapore Standard Eurocode 1 : Actions on structures – Part 1-2 : General actions – Actions on structures exposed to fire

SS EN 1991-1-6 : 2009 Singapore Standard Eurocode 1 – Actions on structures – Part 1-6 : General actions – Actions during execution

SS EN 1992-1-1 : 2008 Singapore Standard Eurocode 2 : Design of concrete structures – Part 1-1 : General rules and rules for buildings

SS EN 1994-1-1 : 2009 Singapore Standard Eurocode 4: Design of composite steel and concrete structures – Part 1_1: General rules and rules for buildings

NA to SS EN 1994-1-1 : 2009 Singapore National Annex to Eurocode 4: Design of composite steel and concrete structures – Part 1_1: General rules and rules for buildings

SS EN 1994-1-2 : 2009 Singapore Standard Eurocode 4 : Design of composite steel and concrete structures – Part 1-2 : General rules – Structural fire design

SS 560:2010 SPECIFICATION FOR Steel for the reinforcement of concrete – Weldable reinforcing steel – Bar, coil and decoiled product

SS 561:2010 SPECIFICATION FOR Steel fabric for the reinforcement of concrete

BC1: 2012 Design Guide on Use of Alternative Structural Steel to BS 5950 and Eurocode 3

AS 1397: 2011 Continuous hot-dip metallic coated steel sheet and strip - Coatings of zinc and zinc alloyed with aluminium and magnesium

Product Descriptions

All descriptions, specifications, illustrations, drawings, data, dimensions and weights contained in this catalogue, all technical literature and websites containing information from BlueScope Lysaght are approximations only.

They are intended by BlueScope Lysaght to be a general description for information and identification purposes and do not create a sale by description. BlueScope Lysaght reserves the right at any time to:

(a) supply Goods with such minor modifications from its drawings and specifications as it sees fit; and

(b) alter specifications shown in its promotional literature to reflect changes made after the date of such publication.

Disclaimer, warranties and limitation of liability

This publication is intended to be an aid for all trades and professionals involved with specifying and installing LYSAGHT[®] products and not to be a substitute for professional judgement.

Terms and conditions of sale available at local BlueScope Lysaght sales offices.

Except to the extent to which liability may not lawfully be excluded or limited, BlueScope Steel Limited will not be under or incur any liability to you for any direct or indirect loss or damage (including, without limitation, consequential loss or damage such as loss of profit or anticipated profit, loss of use, damage to goodwill and loss due to delay) however caused (including, without limitation, breach of contract, negligence and/or breach of statute), which you may suffer or incur in connection with this publication.

© Copyright BlueScope Steel Limited October 24, 2013

For technical enquiries: NS BlueScope Lysaght Singapore Pte Ltd 18 Benoi Sector, Singapore 629851 Tel: (+65) 6264 1577, Fax: (+65) 6265 0951 email: SGsupport@bluescopesteel.com, web: www.lysaght.com.sg Please check the latest information which is always available on our website.

or transmitted in any form or by any means, electronic, mechanical, recording or otherwise, without written permission from BlueScope Steel Limited. LYSAGHT[®], KLIP-LOK[®], SPANDEK[®], TRIMDEK[®], SELECT SEAM[®], LOCKED SEAM[®], ZIPDEK[®], PRESTIGE[®], BONDEK[®], POWERDEK[®], PROBUILD[®], ZINCALUME[®] and COLORBOND[®] are registered trademark and ULTRALITE[™] is a trademark of BlueScope Steel Limited ABN 16 000 011 058. BlueScope Steel Limited

* Warranty terms and conditions apply